Files
gonum/spatial/r2/vector.go
Sebastien Binet c9092a1e6a spatial/r2,all: harmonize r2.Vec API with r3.Vec API
Migration to the new API can be achieved with this rsc.io/rf script:

```
rf ex {
	import "gonum.org/v1/gonum/spatial/r2";
	var p,q r2.Vec;
	var f float64;

	p.Add(q) -> r2.Add(p, q);
	p.Sub(q) -> r2.Sub(p, q);
	p.Scale(f) -> r2.Scale(f, p);
	p.Dot(q) -> r2.Dot(p, q);
	p.Cross(q) -> r2.Cross(p, q);
	p.Rotate(f, q) -> r2.Rotate(p, f, q);
}
```

Updates gonum/gonum#1553.
2021-01-29 12:39:42 +01:00

114 lines
2.3 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r2
import "math"
// Vec is a 2D vector.
type Vec struct {
X, Y float64
}
// Add returns the vector sum of p and q.
func Add(p, q Vec) Vec {
return Vec{
X: p.X + q.X,
Y: p.Y + q.Y,
}
}
// Sub returns the vector sum of p and -q.
func Sub(p, q Vec) Vec {
return Vec{
X: p.X - q.X,
Y: p.Y - q.Y,
}
}
// Scale returns the vector p scaled by f.
func Scale(f float64, p Vec) Vec {
return Vec{
X: f * p.X,
Y: f * p.Y,
}
}
// Dot returns the dot product p·q.
func Dot(p, q Vec) float64 {
return p.X*q.X + p.Y*q.Y
}
// Cross returns the cross product p×q.
func Cross(p, q Vec) float64 {
return p.X*q.Y - p.Y*q.X
}
// Rotate returns a new vector, rotated by alpha around the provided point, q.
func Rotate(p Vec, alpha float64, q Vec) Vec {
return NewRotation(alpha, q).Rotate(p)
}
// Norm returns the Euclidean norm of p
// |p| = sqrt(p_x^2 + p_y^2).
func Norm(p Vec) float64 {
return math.Hypot(p.X, p.Y)
}
// Norm returns the Euclidean squared norm of p
// |p|^2 = p_x^2 + p_y^2.
func Norm2(p Vec) float64 {
return p.X*p.X + p.Y*p.Y
}
// Unit returns the unit vector colinear to p.
// Unit returns {NaN,NaN} for the zero vector.
func Unit(p Vec) Vec {
if p.X == 0 && p.Y == 0 {
return Vec{X: math.NaN(), Y: math.NaN()}
}
return Scale(1/Norm(p), p)
}
// Cos returns the cosine of the opening angle between p and q.
func Cos(p, q Vec) float64 {
return Dot(p, q) / (Norm(p) * Norm(q))
}
// Box is a 2D bounding box.
type Box struct {
Min, Max Vec
}
// Rotation describes a rotation in 2D.
type Rotation struct {
sin, cos float64
p Vec
}
// NewRotation creates a rotation by alpha, around p.
func NewRotation(alpha float64, p Vec) Rotation {
if alpha == 0 {
return Rotation{sin: 0, cos: 1, p: p}
}
sin, cos := math.Sincos(alpha)
return Rotation{sin: sin, cos: cos, p: p}
}
// Rotate returns the rotated vector according to the definition of rot.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
o := Sub(p, r.p)
return Add(Vec{
X: (o.X*r.cos - o.Y*r.sin),
Y: (o.X*r.sin + o.Y*r.cos),
}, r.p)
}
func (r Rotation) isIdentity() bool {
return r.sin == 0 && r.cos == 1
}