Files
gonum/unittype.go
2013-10-09 13:07:30 -07:00

289 lines
9.0 KiB
Go

package unit
import (
"sort"
"strconv"
"sync"
)
// Uniter is an interface representing a type that can be converted
// to a unit.
type Uniter interface {
Unit() *Unit
}
// Dimension is a type representing an SI base dimension or other
// orthogonal dimension. If a new dimension is desired for a
// domain-specific problem, NewDimension should be used. Integers
// should never be cast as type dimension
// // Good: Create a package constant with an init function
// var MyDimension unit.Dimension
// init(){
// MyDimension = NewDimension("my")
// }
// main(){
// var := MyDimension(28.2)
// }
type Dimension int
const (
reserved Dimension = iota
// SI Base Units
CurrentDim Dimension
LengthDim
LuminousIntensityDim
MassDim
TemperatureDim
TimeDim
// Start of other SI Units
AngleDim // e.g. radians
lastPackageDimension // Used in create dimension
)
var lastCreatedDimension Dimension = lastPackageDimension
var dimensionToSymbol map[Dimension]string = make(map[Dimension]string) // for printing
var symbolToDimension map[string]Dimension = make(map[string]Dimension) // for guaranteeing there aren't two identical symbols
// TODO: Should we actually reserve "common" SI unit symbols ("N", "J", etc.) so there isn't confusion
// TODO: If we have a fancier ParseUnit, maybe the 'reserved' symbols should be a different map
// map[string]string which says how they go?
func init() {
dimensionToSymbol[CurrentDim] = "A"
symbolToDimension["A"] = CurrentDim
dimensionToSymbol[LengthDim] = "m"
symbolToDimension["m"] = LengthDim
dimensionToSymbol[LuminousIntensityDim] = "cd"
symbolToDimension["cd"] = LuminousIntensityDim
dimensionToSymbol[MassDim] = "kg"
symbolToDimension["kg"] = MassDim
dimensionToSymbol[TemperatureDim] = "K"
symbolToDimension["K"] = TemperatureDim
dimensionToSymbol[TimeDim] = "s"
symbolToDimension["s"] = TimeDim
dimensionToSymbol[AngleDim] = "rad"
symbolToDimension["rad"] = AngleDim
// Reserve common SI symbols
// base units
symbolToDimension["mol"] = reserved
// prefixes
symbolToDimension["Y"] = reserved
symbolToDimension["Z"] = reserved
symbolToDimension["E"] = reserved
symbolToDimension["P"] = reserved
symbolToDimension["T"] = reserved
symbolToDimension["G"] = reserved
symbolToDimension["M"] = reserved
symbolToDimension["k"] = reserved
symbolToDimension["h"] = reserved
symbolToDimension["da"] = reserved
symbolToDimension["d"] = reserved
symbolToDimension["c"] = reserved
symbolToDimension["m"] = reserved
symbolToDimension["μ"] = reserved
symbolToDimension["n"] = reserved
symbolToDimension["p"] = reserved
symbolToDimension["f"] = reserved
symbolToDimension["a"] = reserved
symbolToDimension["z"] = reserved
symbolToDimension["y"] = reserved
// SI Derived units with special symbols
symbolToDimension["sr"] = reserved
symbolToDimension["F"] = reserved
symbolToDimension["C"] = reserved
symbolToDimension["S"] = reserved
symbolToDimension["H"] = reserved
symbolToDimension["V"] = reserved
symbolToDimension["Ω"] = reserved
symbolToDimension["J"] = reserved
symbolToDimension["N"] = reserved
symbolToDimension["Hz"] = reserved
symbolToDimension["lx"] = reserved
symbolToDimension["lm"] = reserved
symbolToDimension["Wb"] = reserved
symbolToDimension["T"] = reserved
symbolToDimension["W"] = reserved
symbolToDimension["Pa"] = reserved
symbolToDimension["Bq"] = reserved
symbolToDimension["Gy"] = reserved
symbolToDimension["Sv"] = reserved
symbolToDimension["kat"] = reserved
// Units in use with SI
symbolToDimension["ha"] = reserved
symbolToDimension["L"] = reserved
symbolToDimension["l"] = reserved
// Units in Use Temporarily with SI
symbolToDimension["bar"] = reserved
symbolToDimension["b"] = reserved
symbolToDimension["Ci"] = reserved
symbolToDimension["R"] = reserved
symbolToDimension["rd"] = reserved
symbolToDimension["rem"] = reserved
}
// Dimensions represent the dimensionality of the unit in powers
// of that dimension. If a key is not present, the power of that
// dimension is zero. Dimensions is used in conjuction with NewUnit
type Dimensions map[Dimension]int
var newUnitMutex *sync.Mutex = &sync.Mutex{} // so there is no race condition for dimension
// NewDimension returns a new dimension variable which will have a
// unique representation across packages to prevent accidental overlap.
// The input string represents a symbol name which will be used for printing
// Unit types. This symbol may not overlap with any of the SI base units
// or other symbols of common use in SI ("kg", "J", "μ", etc.). A list of
// such symbols can be found at http://lamar.colostate.edu/~hillger/basic.htm or
// by consulting the package source. Furthermore, the provided symbol is also
// forbidden from overlapping with other packages calling NewDimension. NewDimension
// is expecting to be used only during initialization, and as such it will panic
// if the symbol matching an existing symbol
// NewDimension should only be called for unit types that are actually orthogonal
// to the base dimensions defined in this package. Please see the package-level
// documentation for further explanation
func NewDimension(symbol string) Dimension {
newUnitMutex.Lock()
defer newUnitMutex.Unlock()
lastCreatedDimension++
_, ok := symbolToDimension[symbol]
if ok {
panic("unit: dimension string " + symbol + " already used")
}
dimensionToSymbol[lastCreatedDimension] = symbol
symbolToDimension[symbol] = lastCreatedDimension
return lastCreatedDimension
}
// Unit is a type a value with generic SI units. Most useful for
// translating between dimensions, for example, by multiplying
// an acceleration with a mass to get a force. Please see the
// package documentation for further explanation.
type Unit struct {
dimensions map[Dimension]int // Map for custom dimensions
value float64
}
// NewUnit creates a new variable of type Unit which has the value
// specified by value and the dimensions specified by the
// base units struct. The value is always in SI Units.
//
// Example: To create an acceleration of 3 m/s^2, one could do
// myvar := CreateUnit(3.0, &Dimensions{unit.LengthDim: 1, unit.TimeDim: -2})
func NewUnit(value float64, d Dimensions) *Unit {
u := &Unit{
dimensions: make(map[Dimension]int),
}
for key, val := range d {
u.dimensions[key] = val
}
u.value = value
return u
}
// DimensionsMatch checks if the dimensions of two Uniters are the same
func DimensionsMatch(a, b Uniter) bool {
aUnit := a.Unit()
bUnit := b.Unit()
if len(aUnit.dimensions) != len(bUnit.dimensions) {
return false
}
for key, val := range aUnit.dimensions {
if bUnit.dimensions[key] != val {
return false
}
}
return true
}
// Add adds the function argument to the reciever. Panics if the units of
// the receiver and the argument don't match.
func (u *Unit) Add(uniter Uniter) *Unit {
a := uniter.Unit()
if !DimensionsMatch(u, a) {
panic("Attempted to add the values of two units whose dimensions do not match.")
}
u.value += a.value
return u
}
// Unit implements the Uniter interface
func (u *Unit) Unit() *Unit {
return u
}
// Mul multiply the receiver by the input changing the dimensions
// of the receiver as appropriate. The input is not changed
func (u *Unit) Mul(uniter Uniter) *Unit {
a := uniter.Unit()
for key, val := range a.dimensions {
u.dimensions[key] += val
}
u.value *= a.value
return u
}
// Div divides the receiver by the argument changing the
// dimensions of the receiver as appropriate
func (u *Unit) Div(uniter Uniter) *Unit {
a := uniter.Unit()
u.value /= a.value
for key, val := range a.dimensions {
u.dimensions[key] -= val
}
return u
}
// Value return the raw value of the unit as a float64. Use of this
// method is, in general, not recommended, though it can be useful
// for printing. Instead, the FromUnit type of a specific
// dimension should be used to guarantee dimension consistency
func (u *Unit) Value() float64 {
return u.value
}
type symbolString struct {
symbol string
pow int
}
type unitPrinters []symbolString
func (u unitPrinters) Len() int {
return len(u)
}
func (u unitPrinters) Less(i, j int) bool {
return u[i].symbol < u[j].symbol
}
func (u unitPrinters) Swap(i, j int) {
u[i], u[j] = u[j], u[i]
}
// String makes Unit satisfy the stringer interface. The unit is printed
// using strconv.FormatFloat(unit.value, 'e', -1, 64), with dimensions
// appended. If the power if the dimension is not zero or one,
// symbol^power is appended, if the power is one, just the symbol is appended
// and if the power is zero, nothing is appended. Dimensions are appended
// in order by symbol name.
func (u Unit) String() string {
str := strconv.FormatFloat(u.value, 'e', -1, 64)
// Map iterates randomly, but print should be in a fixed order. Can't use
// dimension number, because for user-defined dimension that number may
// not be fixed from run to run.
data := make(unitPrinters, 0, 10)
for dimension, power := range u.dimensions {
if power != 0 {
data = append(data, symbolString{dimensionToSymbol[dimension], power})
}
}
sort.Sort(data)
for _, s := range data {
str += " " + s.symbol
if s.pow != 1 {
str += "^" + strconv.Itoa(s.pow)
}
}
return str
}