mirror of
https://github.com/gonum/gonum.git
synced 2025-10-07 16:11:03 +08:00
210 lines
3.7 KiB
Go
210 lines
3.7 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package distuv
|
|
|
|
import (
|
|
"math"
|
|
"testing"
|
|
)
|
|
|
|
func TestHalfKStandardWeibullProb(t *testing.T) {
|
|
pts := []univariateProbPoint{
|
|
{
|
|
loc: 0,
|
|
prob: math.Inf(1),
|
|
cumProb: 0,
|
|
logProb: math.Inf(1),
|
|
},
|
|
{
|
|
loc: -1,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: 0,
|
|
},
|
|
{
|
|
loc: 1,
|
|
prob: 0.183939720585721,
|
|
cumProb: 0.632120558828558,
|
|
logProb: -1.693147180559950,
|
|
},
|
|
{
|
|
loc: 20,
|
|
prob: 0.001277118038048,
|
|
cumProb: 0.988577109006533,
|
|
logProb: -6.663149272336520,
|
|
},
|
|
}
|
|
testDistributionProbs(t, Weibull{K: 0.5, Lambda: 1}, "0.5K Standard Weibull", pts)
|
|
}
|
|
|
|
func TestExponentialStandardWeibullProb(t *testing.T) {
|
|
pts := []univariateProbPoint{
|
|
{
|
|
loc: 0,
|
|
prob: 1,
|
|
cumProb: 0,
|
|
logProb: math.Inf(1),
|
|
},
|
|
{
|
|
loc: -1,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: 0,
|
|
},
|
|
{
|
|
loc: 1,
|
|
prob: 0.367879441171442,
|
|
cumProb: 0.632120558828558,
|
|
logProb: -1.0,
|
|
},
|
|
{
|
|
loc: 20,
|
|
prob: 0.000000002061154,
|
|
cumProb: 0.999999997938846,
|
|
logProb: -20.0,
|
|
},
|
|
}
|
|
testDistributionProbs(t, Weibull{K: 1, Lambda: 1}, "1K (Exponential) Standard Weibull", pts)
|
|
}
|
|
|
|
func TestRayleighStandardWeibullProb(t *testing.T) {
|
|
pts := []univariateProbPoint{
|
|
{
|
|
loc: 0,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: math.Inf(-1),
|
|
},
|
|
{
|
|
loc: -1,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: 0,
|
|
},
|
|
{
|
|
loc: 1,
|
|
prob: 0.735758882342885,
|
|
cumProb: 0.632120558828558,
|
|
logProb: -0.306852819440055,
|
|
},
|
|
{
|
|
loc: 20,
|
|
prob: 0,
|
|
cumProb: 1,
|
|
logProb: -396.31112054588607,
|
|
},
|
|
}
|
|
testDistributionProbs(t, Weibull{K: 2, Lambda: 1}, "2K (Rayleigh) Standard Weibull", pts)
|
|
}
|
|
|
|
func TestFiveKStandardWeibullProb(t *testing.T) {
|
|
pts := []univariateProbPoint{
|
|
{
|
|
loc: 0,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: math.Inf(-1),
|
|
},
|
|
{
|
|
loc: -1,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: 0,
|
|
},
|
|
{
|
|
loc: 1,
|
|
prob: 1.839397205857210,
|
|
cumProb: 0.632120558828558,
|
|
logProb: 0.609437912434100,
|
|
},
|
|
{
|
|
loc: 20,
|
|
prob: 0,
|
|
cumProb: 1,
|
|
logProb: -3199986.4076329935,
|
|
},
|
|
}
|
|
testDistributionProbs(t, Weibull{K: 5, Lambda: 1}, "5K Standard Weibull", pts)
|
|
}
|
|
|
|
func TestScaledUpHalfKStandardWeibullProb(t *testing.T) {
|
|
pts := []univariateProbPoint{
|
|
{
|
|
loc: 0,
|
|
prob: math.Inf(1),
|
|
cumProb: 0,
|
|
logProb: math.Inf(1),
|
|
},
|
|
{
|
|
loc: -1,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: 0,
|
|
},
|
|
{
|
|
loc: 1,
|
|
prob: 0.180436508682207,
|
|
cumProb: 0.558022622759326,
|
|
logProb: -1.712376315541750,
|
|
},
|
|
{
|
|
loc: 20,
|
|
prob: 0.002369136850928,
|
|
cumProb: 0.974047406098605,
|
|
logProb: -6.045229588092130,
|
|
},
|
|
}
|
|
testDistributionProbs(t, Weibull{K: 0.5, Lambda: 1.5}, "0.5K 1.5λ Weibull", pts)
|
|
}
|
|
|
|
func TestScaledDownHalfKStandardWeibullProb(t *testing.T) {
|
|
pts := []univariateProbPoint{
|
|
{
|
|
loc: 0,
|
|
prob: math.Inf(1),
|
|
cumProb: 0,
|
|
logProb: math.Inf(1),
|
|
},
|
|
{
|
|
loc: -1,
|
|
prob: 0,
|
|
cumProb: 0,
|
|
logProb: 0,
|
|
},
|
|
{
|
|
loc: 1,
|
|
prob: 0.171909491538362,
|
|
cumProb: 0.756883265565786,
|
|
logProb: -1.760787152653070,
|
|
},
|
|
{
|
|
loc: 20,
|
|
prob: 0.000283302579100,
|
|
cumProb: 0.998208237166091,
|
|
logProb: -8.168995047393730,
|
|
},
|
|
}
|
|
testDistributionProbs(t, Weibull{K: 0.5, Lambda: 0.5}, "0.5K 0.5λ Weibull", pts)
|
|
}
|
|
|
|
func TestWeibullScore(t *testing.T) {
|
|
for _, test := range []*Weibull{
|
|
{
|
|
K: 1,
|
|
Lambda: 1,
|
|
},
|
|
{
|
|
K: 2,
|
|
Lambda: 3.6,
|
|
},
|
|
{
|
|
K: 3.4,
|
|
Lambda: 8,
|
|
},
|
|
} {
|
|
testDerivParam(t, test)
|
|
}
|
|
}
|