mirror of
https://github.com/gonum/gonum.git
synced 2025-10-08 00:20:11 +08:00
162 lines
4.4 KiB
Go
162 lines
4.4 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package distuv
|
||
|
||
import (
|
||
"math"
|
||
|
||
"golang.org/x/exp/rand"
|
||
|
||
"gonum.org/v1/gonum/mathext"
|
||
)
|
||
|
||
const logPi = 1.1447298858494001741 // http://oeis.org/A053510
|
||
|
||
// StudentsT implements the three-parameter Student's T distribution, a distribution
|
||
// over the real numbers.
|
||
//
|
||
// The Student's T distribution has density function
|
||
// Γ((ν+1)/2) / (sqrt(νπ) Γ(ν/2) σ) (1 + 1/ν * ((x-μ)/σ)^2)^(-(ν+1)/2)
|
||
//
|
||
// The Student's T distribution approaches the normal distribution as ν → ∞.
|
||
//
|
||
// For more information, see https://en.wikipedia.org/wiki/Student%27s_t-distribution,
|
||
// specifically https://en.wikipedia.org/wiki/Student%27s_t-distribution#Non-standardized_Student.27s_t-distribution .
|
||
//
|
||
// The standard Student's T distribution is with Mu = 0, and Sigma = 1.
|
||
type StudentsT struct {
|
||
// Mu is the location parameter of the distribution, and the mean of the
|
||
// distribution
|
||
Mu float64
|
||
|
||
// Sigma is the scale parameter of the distribution. It is related to the
|
||
// standard deviation by std = Sigma * sqrt(Nu/(Nu-2))
|
||
Sigma float64
|
||
|
||
// Nu is the shape prameter of the distribution, representing the number of
|
||
// degrees of the distribution, and one less than the number of observations
|
||
// from a Normal distribution.
|
||
Nu float64
|
||
|
||
Src rand.Source
|
||
}
|
||
|
||
// CDF computes the value of the cumulative distribution function at x.
|
||
func (s StudentsT) CDF(x float64) float64 {
|
||
// transform to standard normal
|
||
y := (x - s.Mu) / s.Sigma
|
||
if y == 0 {
|
||
return 0.5
|
||
}
|
||
// For t > 0
|
||
// F(y) = 1 - 0.5 * I_t(y)(nu/2, 1/2)
|
||
// t(y) = nu/(y^2 + nu)
|
||
// and 1 - F(y) for t < 0
|
||
t := s.Nu / (y*y + s.Nu)
|
||
if y > 0 {
|
||
return 1 - 0.5*mathext.RegIncBeta(0.5*s.Nu, 0.5, t)
|
||
}
|
||
return 0.5 * mathext.RegIncBeta(s.Nu/2, 0.5, t)
|
||
}
|
||
|
||
// LogProb computes the natural logarithm of the value of the probability
|
||
// density function at x.
|
||
func (s StudentsT) LogProb(x float64) float64 {
|
||
g1, _ := math.Lgamma((s.Nu + 1) / 2)
|
||
g2, _ := math.Lgamma(s.Nu / 2)
|
||
z := (x - s.Mu) / s.Sigma
|
||
return g1 - g2 - 0.5*math.Log(s.Nu) - 0.5*logPi - math.Log(s.Sigma) - ((s.Nu+1)/2)*math.Log(1+z*z/s.Nu)
|
||
}
|
||
|
||
// Mean returns the mean of the probability distribution.
|
||
func (s StudentsT) Mean() float64 {
|
||
return s.Mu
|
||
}
|
||
|
||
// Mode returns the mode of the distribution.
|
||
func (s StudentsT) Mode() float64 {
|
||
return s.Mu
|
||
}
|
||
|
||
// NumParameters returns the number of parameters in the distribution.
|
||
func (StudentsT) NumParameters() int {
|
||
return 3
|
||
}
|
||
|
||
// Prob computes the value of the probability density function at x.
|
||
func (s StudentsT) Prob(x float64) float64 {
|
||
return math.Exp(s.LogProb(x))
|
||
}
|
||
|
||
// Quantile returns the inverse of the cumulative distribution function.
|
||
func (s StudentsT) Quantile(p float64) float64 {
|
||
if p < 0 || p > 1 {
|
||
panic(badPercentile)
|
||
}
|
||
// F(x) = 1 - 0.5 * I_t(x)(nu/2, 1/2)
|
||
// t(x) = nu/(t^2 + nu)
|
||
if p == 0.5 {
|
||
return s.Mu
|
||
}
|
||
var y float64
|
||
if p > 0.5 {
|
||
// Know t > 0
|
||
t := mathext.InvRegIncBeta(s.Nu/2, 0.5, 2*(1-p))
|
||
y = math.Sqrt(s.Nu * (1 - t) / t)
|
||
} else {
|
||
t := mathext.InvRegIncBeta(s.Nu/2, 0.5, 2*p)
|
||
y = -math.Sqrt(s.Nu * (1 - t) / t)
|
||
}
|
||
// Convert out of standard normal
|
||
return y*s.Sigma + s.Mu
|
||
}
|
||
|
||
// Rand returns a random sample drawn from the distribution.
|
||
func (s StudentsT) Rand() float64 {
|
||
// http://www.math.uah.edu/stat/special/Student.html
|
||
n := Normal{0, 1, s.Src}.Rand()
|
||
c := Gamma{s.Nu / 2, 0.5, s.Src}.Rand()
|
||
z := n / math.Sqrt(c/s.Nu)
|
||
return z*s.Sigma + s.Mu
|
||
}
|
||
|
||
// StdDev returns the standard deviation of the probability distribution.
|
||
//
|
||
// The standard deviation is undefined for ν <= 1, and this returns math.NaN().
|
||
func (s StudentsT) StdDev() float64 {
|
||
return math.Sqrt(s.Variance())
|
||
}
|
||
|
||
// Survival returns the survival function (complementary CDF) at x.
|
||
func (s StudentsT) Survival(x float64) float64 {
|
||
// transform to standard normal
|
||
y := (x - s.Mu) / s.Sigma
|
||
if y == 0 {
|
||
return 0.5
|
||
}
|
||
// For t > 0
|
||
// F(y) = 1 - 0.5 * I_t(y)(nu/2, 1/2)
|
||
// t(y) = nu/(y^2 + nu)
|
||
// and 1 - F(y) for t < 0
|
||
t := s.Nu / (y*y + s.Nu)
|
||
if y > 0 {
|
||
return 0.5 * mathext.RegIncBeta(s.Nu/2, 0.5, t)
|
||
}
|
||
return 1 - 0.5*mathext.RegIncBeta(s.Nu/2, 0.5, t)
|
||
}
|
||
|
||
// Variance returns the variance of the probability distribution.
|
||
//
|
||
// The variance is undefined for ν <= 1, and this returns math.NaN().
|
||
func (s StudentsT) Variance() float64 {
|
||
if s.Nu < 1 {
|
||
return math.NaN()
|
||
}
|
||
if s.Nu <= 2 {
|
||
return math.Inf(1)
|
||
}
|
||
return s.Sigma * s.Sigma * s.Nu / (s.Nu - 2)
|
||
}
|