Files
gonum/stat/distuv/beta.go
Brendan Tracey 6ee525f5f2 stat/distuv: Add Entropy function for Beta distribution (#513)
* stat/distuv: Add Entropy function for Beta distribution
2018-05-30 22:43:20 -06:00

137 lines
3.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distuv
import (
"math"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/mathext"
)
// Beta implements the Beta distribution, a two-parameter continuous distribution
// with support between 0 and 1.
//
// The beta distribution has density function
// x^(α-1) * (1-x)^(β-1) * Γ(α+β) / (Γ(α)*Γ(β))
//
// For more information, see https://en.wikipedia.org/wiki/Beta_distribution
type Beta struct {
// Alpha is the left shape parameter of the distribution. Alpha must be greater
// than 0.
Alpha float64
// Beta is the right shape parameter of the distribution. Beta must be greater
// than 0.
Beta float64
Src rand.Source
}
// CDF computes the value of the cumulative distribution function at x.
func (b Beta) CDF(x float64) float64 {
if x <= 0 {
return 0
}
if x >= 1 {
return 1
}
return mathext.RegIncBeta(b.Alpha, b.Beta, x)
}
// Entropy returns the differential entropy of the distribution.
func (b Beta) Entropy() float64 {
if b.Alpha <= 0 || b.Beta <= 0 {
panic("beta: negative parameters")
}
return mathext.Lbeta(b.Alpha, b.Beta) - (b.Alpha-1)*mathext.Digamma(b.Alpha) -
(b.Beta-1)*mathext.Digamma(b.Beta) + (b.Alpha+b.Beta-2)*mathext.Digamma(b.Alpha+b.Beta)
}
// ExKurtosis returns the excess kurtosis of the distribution.
func (b Beta) ExKurtosis() float64 {
num := 6 * ((b.Alpha-b.Beta)*(b.Alpha-b.Beta)*(b.Alpha+b.Beta+1) - b.Alpha*b.Beta*(b.Alpha+b.Beta+2))
den := b.Alpha * b.Beta * (b.Alpha + b.Beta + 2) * (b.Alpha + b.Beta + 3)
return num / den
}
// LogProb computes the natural logarithm of the value of the probability
// density function at x.
func (b Beta) LogProb(x float64) float64 {
if x < 0 || x > 1 {
return math.Inf(-1)
}
if b.Alpha <= 0 || b.Beta <= 0 {
panic("beta: negative parameters")
}
lab, _ := math.Lgamma(b.Alpha + b.Beta)
la, _ := math.Lgamma(b.Alpha)
lb, _ := math.Lgamma(b.Beta)
return lab - la - lb + (b.Alpha-1)*math.Log(x) + (b.Beta-1)*math.Log(1-x)
}
// Mean returns the mean of the probability distribution.
func (b Beta) Mean() float64 {
return b.Alpha / (b.Alpha + b.Beta)
}
// Mode returns the mode of the distribution.
//
// Mode returns NaN if either parameter is less than or equal to 1 as a special case.
func (b Beta) Mode() float64 {
if b.Alpha <= 1 || b.Beta <= 1 {
return math.NaN()
}
return (b.Alpha - 1) / (b.Alpha + b.Beta - 2)
}
// NumParameters returns the number of parameters in the distribution.
func (b Beta) NumParameters() int {
return 2
}
// Prob computes the value of the probability density function at x.
func (b Beta) Prob(x float64) float64 {
return math.Exp(b.LogProb(x))
}
// Quantile returns the inverse of the cumulative distribution function.
func (b Beta) Quantile(p float64) float64 {
if p < 0 || p > 1 {
panic(badPercentile)
}
return mathext.InvRegIncBeta(b.Alpha, b.Beta, p)
}
// Rand returns a random sample drawn from the distribution.
func (b Beta) Rand() float64 {
ga := Gamma{Alpha: b.Alpha, Beta: 1, Src: b.Src}.Rand()
gb := Gamma{Alpha: b.Beta, Beta: 1, Src: b.Src}.Rand()
return ga / (ga + gb)
}
// StdDev returns the standard deviation of the probability distribution.
func (b Beta) StdDev() float64 {
return math.Sqrt(b.Variance())
}
// Survival returns the survival function (complementary CDF) at x.
func (b Beta) Survival(x float64) float64 {
switch {
case x <= 0:
return 1
case x >= 1:
return 0
}
return mathext.RegIncBeta(b.Beta, b.Alpha, 1-x)
}
// Variance returns the variance of the probability distribution.
func (b Beta) Variance() float64 {
return b.Alpha * b.Beta / ((b.Alpha + b.Beta) * (b.Alpha + b.Beta) * (b.Alpha + b.Beta + 1))
}