mirror of
https://github.com/gonum/gonum.git
synced 2025-10-09 00:50:16 +08:00
365 lines
10 KiB
Go
365 lines
10 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package distmv
|
||
|
||
import (
|
||
"math"
|
||
"sort"
|
||
|
||
"golang.org/x/exp/rand"
|
||
"golang.org/x/tools/container/intsets"
|
||
|
||
"gonum.org/v1/gonum/floats"
|
||
"gonum.org/v1/gonum/mat"
|
||
"gonum.org/v1/gonum/stat/distuv"
|
||
)
|
||
|
||
// StudentsT is a multivariate Student's T distribution. It is a distribution over
|
||
// ℝ^n with the probability density
|
||
// p(y) = (Γ((ν+n)/2) / Γ(ν/2)) * (νπ)^(-n/2) * |Ʃ|^(-1/2) *
|
||
// (1 + 1/ν * (y-μ)^T * Ʃ^-1 * (y-μ))^(-(ν+n)/2)
|
||
// where ν is a scalar greater than 2, μ is a vector in ℝ^n, and Ʃ is an n×n
|
||
// symmetric positive definite matrix.
|
||
//
|
||
// In this distribution, ν sets the spread of the distribution, similar to
|
||
// the degrees of freedom in a univariate Student's T distribution. As ν → ∞,
|
||
// the distribution approaches a multi-variate normal distribution.
|
||
// μ is the mean of the distribution, and the covariance is ν/(ν-2)*Ʃ.
|
||
//
|
||
// See https://en.wikipedia.org/wiki/Student%27s_t-distribution and
|
||
// http://users.isy.liu.se/en/rt/roth/student.pdf for more information.
|
||
type StudentsT struct {
|
||
nu float64
|
||
mu []float64
|
||
// If src is altered, rnd must be updated.
|
||
src rand.Source
|
||
rnd *rand.Rand
|
||
|
||
sigma mat.SymDense // only stored if needed
|
||
|
||
chol mat.Cholesky
|
||
lower mat.TriDense
|
||
logSqrtDet float64
|
||
dim int
|
||
}
|
||
|
||
// NewStudentsT creates a new StudentsT with the given nu, mu, and sigma
|
||
// parameters.
|
||
//
|
||
// NewStudentsT panics if len(mu) == 0, or if len(mu) != sigma.Symmetric(). If
|
||
// the covariance matrix is not positive-definite, nil is returned and ok is false.
|
||
func NewStudentsT(mu []float64, sigma mat.Symmetric, nu float64, src rand.Source) (dist *StudentsT, ok bool) {
|
||
if len(mu) == 0 {
|
||
panic(badZeroDimension)
|
||
}
|
||
dim := sigma.Symmetric()
|
||
if dim != len(mu) {
|
||
panic(badSizeMismatch)
|
||
}
|
||
|
||
s := &StudentsT{
|
||
nu: nu,
|
||
mu: make([]float64, dim),
|
||
dim: dim,
|
||
src: src,
|
||
}
|
||
if src != nil {
|
||
s.rnd = rand.New(src)
|
||
}
|
||
copy(s.mu, mu)
|
||
|
||
ok = s.chol.Factorize(sigma)
|
||
if !ok {
|
||
return nil, false
|
||
}
|
||
s.sigma = *mat.NewSymDense(dim, nil)
|
||
s.sigma.CopySym(sigma)
|
||
s.chol.LTo(&s.lower)
|
||
s.logSqrtDet = 0.5 * s.chol.LogDet()
|
||
return s, true
|
||
}
|
||
|
||
// ConditionStudentsT returns the Student's T distribution that is the receiver
|
||
// conditioned on the input evidence, and the success of the operation.
|
||
// The returned Student's T has dimension
|
||
// n - len(observed), where n is the dimension of the original receiver.
|
||
// The dimension order is preserved during conditioning, so if the value
|
||
// of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
|
||
// of the original Student's T distribution.
|
||
//
|
||
// ok indicates whether there was a failure during the update. If ok is false
|
||
// the operation failed and dist is not usable.
|
||
// Mathematically this is impossible, but can occur with finite precision arithmetic.
|
||
func (s *StudentsT) ConditionStudentsT(observed []int, values []float64, src rand.Source) (dist *StudentsT, ok bool) {
|
||
if len(observed) == 0 {
|
||
panic("studentst: no observed value")
|
||
}
|
||
if len(observed) != len(values) {
|
||
panic(badInputLength)
|
||
}
|
||
|
||
for _, v := range observed {
|
||
if v < 0 || v >= s.dim {
|
||
panic("studentst: observed value out of bounds")
|
||
}
|
||
}
|
||
|
||
newNu, newMean, newSigma := studentsTConditional(observed, values, s.nu, s.mu, &s.sigma)
|
||
if newMean == nil {
|
||
return nil, false
|
||
}
|
||
|
||
return NewStudentsT(newMean, newSigma, newNu, src)
|
||
|
||
}
|
||
|
||
// studentsTConditional updates a Student's T distribution based on the observed samples
|
||
// (see documentation for the public function). The Gaussian conditional update
|
||
// is treated as a special case when nu == math.Inf(1).
|
||
func studentsTConditional(observed []int, values []float64, nu float64, mu []float64, sigma mat.Symmetric) (newNu float64, newMean []float64, newSigma *mat.SymDense) {
|
||
dim := len(mu)
|
||
ob := len(observed)
|
||
|
||
unobserved := findUnob(observed, dim)
|
||
|
||
unob := len(unobserved)
|
||
if unob == 0 {
|
||
panic("stat: all dimensions observed")
|
||
}
|
||
|
||
mu1 := make([]float64, unob)
|
||
for i, v := range unobserved {
|
||
mu1[i] = mu[v]
|
||
}
|
||
mu2 := make([]float64, ob) // really v - mu2
|
||
for i, v := range observed {
|
||
mu2[i] = values[i] - mu[v]
|
||
}
|
||
|
||
var sigma11, sigma22 mat.SymDense
|
||
sigma11.SubsetSym(sigma, unobserved)
|
||
sigma22.SubsetSym(sigma, observed)
|
||
|
||
sigma21 := mat.NewDense(ob, unob, nil)
|
||
for i, r := range observed {
|
||
for j, c := range unobserved {
|
||
v := sigma.At(r, c)
|
||
sigma21.Set(i, j, v)
|
||
}
|
||
}
|
||
|
||
var chol mat.Cholesky
|
||
ok := chol.Factorize(&sigma22)
|
||
if !ok {
|
||
return math.NaN(), nil, nil
|
||
}
|
||
|
||
// Compute mu_1 + sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2).
|
||
v := mat.NewVecDense(ob, mu2)
|
||
var tmp, tmp2 mat.VecDense
|
||
err := chol.SolveVec(&tmp, v)
|
||
if err != nil {
|
||
return math.NaN(), nil, nil
|
||
}
|
||
tmp2.MulVec(sigma21.T(), &tmp)
|
||
|
||
for i := range mu1 {
|
||
mu1[i] += tmp2.At(i, 0)
|
||
}
|
||
|
||
// Compute tmp4 = sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}.
|
||
// TODO(btracey): Should this be a method of SymDense?
|
||
var tmp3, tmp4 mat.Dense
|
||
err = chol.Solve(&tmp3, sigma21)
|
||
if err != nil {
|
||
return math.NaN(), nil, nil
|
||
}
|
||
tmp4.Mul(sigma21.T(), &tmp3)
|
||
|
||
// Compute sigma_{1,1} - tmp4
|
||
// TODO(btracey): If tmp4 can constructed with a method, then this can be
|
||
// replaced with SubSym.
|
||
for i := 0; i < len(unobserved); i++ {
|
||
for j := i; j < len(unobserved); j++ {
|
||
v := sigma11.At(i, j)
|
||
sigma11.SetSym(i, j, v-tmp4.At(i, j))
|
||
}
|
||
}
|
||
|
||
// The computed variables are accurate for a Normal.
|
||
if math.IsInf(nu, 1) {
|
||
return nu, mu1, &sigma11
|
||
}
|
||
|
||
// Compute beta = (v - mu_2)^T * sigma_{2,2}^-1 * (v - mu_2)^T
|
||
beta := mat.Dot(v, &tmp)
|
||
|
||
// Scale the covariance matrix
|
||
sigma11.ScaleSym((nu+beta)/(nu+float64(ob)), &sigma11)
|
||
|
||
return nu + float64(ob), mu1, &sigma11
|
||
}
|
||
|
||
// findUnob returns the unobserved variables (the complementary set to observed).
|
||
// findUnob panics if any value repeated in observed.
|
||
func findUnob(observed []int, dim int) (unobserved []int) {
|
||
var setOb intsets.Sparse
|
||
for _, v := range observed {
|
||
setOb.Insert(v)
|
||
}
|
||
var setAll intsets.Sparse
|
||
for i := 0; i < dim; i++ {
|
||
setAll.Insert(i)
|
||
}
|
||
var setUnob intsets.Sparse
|
||
setUnob.Difference(&setAll, &setOb)
|
||
unobserved = setUnob.AppendTo(nil)
|
||
sort.Ints(unobserved)
|
||
return unobserved
|
||
}
|
||
|
||
// CovarianceMatrix returns the covariance matrix of the distribution. Upon
|
||
// return, the value at element {i, j} of the covariance matrix is equal to
|
||
// the covariance of the i^th and j^th variables.
|
||
// covariance(i, j) = E[(x_i - E[x_i])(x_j - E[x_j])]
|
||
// If the input matrix is nil a new matrix is allocated, otherwise the result
|
||
// is stored in-place into the input.
|
||
func (st *StudentsT) CovarianceMatrix(s *mat.SymDense) *mat.SymDense {
|
||
if s == nil {
|
||
s = mat.NewSymDense(st.dim, nil)
|
||
}
|
||
sn := s.Symmetric()
|
||
if sn != st.dim {
|
||
panic("normal: input matrix size mismatch")
|
||
}
|
||
s.CopySym(&st.sigma)
|
||
s.ScaleSym(st.nu/(st.nu-2), s)
|
||
return s
|
||
}
|
||
|
||
// Dim returns the dimension of the distribution.
|
||
func (s *StudentsT) Dim() int {
|
||
return s.dim
|
||
}
|
||
|
||
// LogProb computes the log of the pdf of the point x.
|
||
func (s *StudentsT) LogProb(y []float64) float64 {
|
||
if len(y) != s.dim {
|
||
panic(badInputLength)
|
||
}
|
||
|
||
nu := s.nu
|
||
n := float64(s.dim)
|
||
lg1, _ := math.Lgamma((nu + n) / 2)
|
||
lg2, _ := math.Lgamma(nu / 2)
|
||
|
||
t1 := lg1 - lg2 - n/2*math.Log(nu*math.Pi) - s.logSqrtDet
|
||
|
||
shift := make([]float64, len(y))
|
||
copy(shift, y)
|
||
floats.Sub(shift, s.mu)
|
||
|
||
x := mat.NewVecDense(s.dim, shift)
|
||
|
||
var tmp mat.VecDense
|
||
s.chol.SolveVec(&tmp, x)
|
||
|
||
dot := mat.Dot(&tmp, x)
|
||
|
||
return t1 - ((nu+n)/2)*math.Log(1+dot/nu)
|
||
}
|
||
|
||
// MarginalStudentsT returns the marginal distribution of the given input variables,
|
||
// and the success of the operation.
|
||
// That is, MarginalStudentsT returns
|
||
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
|
||
// where x_i are the dimensions in the input, and x_o are the remaining dimensions.
|
||
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
|
||
//
|
||
// The input src is passed to the created StudentsT.
|
||
//
|
||
// ok indicates whether there was a failure during the marginalization. If ok is false
|
||
// the operation failed and dist is not usable.
|
||
// Mathematically this is impossible, but can occur with finite precision arithmetic.
|
||
func (s *StudentsT) MarginalStudentsT(vars []int, src rand.Source) (dist *StudentsT, ok bool) {
|
||
newMean := make([]float64, len(vars))
|
||
for i, v := range vars {
|
||
newMean[i] = s.mu[v]
|
||
}
|
||
var newSigma mat.SymDense
|
||
newSigma.SubsetSym(&s.sigma, vars)
|
||
return NewStudentsT(newMean, &newSigma, s.nu, src)
|
||
}
|
||
|
||
// MarginalStudentsTSingle returns the marginal distribution of the given input variable.
|
||
// That is, MarginalStudentsTSingle returns
|
||
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
|
||
// where i is the input index, and x_o are the remaining dimensions.
|
||
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
|
||
//
|
||
// The input src is passed to the call to NewStudentsT.
|
||
func (s *StudentsT) MarginalStudentsTSingle(i int, src rand.Source) distuv.StudentsT {
|
||
return distuv.StudentsT{
|
||
Mu: s.mu[i],
|
||
Sigma: math.Sqrt(s.sigma.At(i, i)),
|
||
Nu: s.nu,
|
||
Src: src,
|
||
}
|
||
}
|
||
|
||
// TODO(btracey): Implement marginal single. Need to modify univariate StudentsT
|
||
// to be three-parameter.
|
||
|
||
// Mean returns the mean of the probability distribution at x. If the
|
||
// input argument is nil, a new slice will be allocated, otherwise the result
|
||
// will be put in-place into the receiver.
|
||
func (s *StudentsT) Mean(x []float64) []float64 {
|
||
x = reuseAs(x, s.dim)
|
||
copy(x, s.mu)
|
||
return x
|
||
}
|
||
|
||
// Nu returns the degrees of freedom parameter of the distribution.
|
||
func (s *StudentsT) Nu() float64 {
|
||
return s.nu
|
||
}
|
||
|
||
// Prob computes the value of the probability density function at x.
|
||
func (s *StudentsT) Prob(y []float64) float64 {
|
||
return math.Exp(s.LogProb(y))
|
||
}
|
||
|
||
// Rand generates a random number according to the distributon.
|
||
// If the input slice is nil, new memory is allocated, otherwise the result is stored
|
||
// in place.
|
||
func (s *StudentsT) Rand(x []float64) []float64 {
|
||
// If Y is distributed according to N(0,Sigma), and U is chi^2 with
|
||
// parameter ν, then
|
||
// X = mu + Y * sqrt(nu / U)
|
||
// X is distributed according to this distribution.
|
||
|
||
// Generate Y.
|
||
x = reuseAs(x, s.dim)
|
||
tmp := make([]float64, s.dim)
|
||
if s.rnd == nil {
|
||
for i := range x {
|
||
tmp[i] = rand.NormFloat64()
|
||
}
|
||
} else {
|
||
for i := range x {
|
||
tmp[i] = s.rnd.NormFloat64()
|
||
}
|
||
}
|
||
xVec := mat.NewVecDense(s.dim, x)
|
||
tmpVec := mat.NewVecDense(s.dim, tmp)
|
||
xVec.MulVec(&s.lower, tmpVec)
|
||
|
||
u := distuv.ChiSquared{K: s.nu, Src: s.src}.Rand()
|
||
floats.Scale(math.Sqrt(s.nu/u), x)
|
||
|
||
floats.Add(x, s.mu)
|
||
return x
|
||
}
|