Files
gonum/stat/distmat/wishart.go
2018-05-03 07:40:18 +09:30

211 lines
5.5 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmat
import (
"math"
"sync"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/mat"
"gonum.org/v1/gonum/mathext"
"gonum.org/v1/gonum/stat/distuv"
)
// Wishart is a distribution over d×d positive symmetric definite matrices. It
// is parametrized by a scalar degrees of freedom parameter ν and a d×d positive
// definite matrix V.
//
// The Wishart PDF is given by
// p(X) = [|X|^((ν-d-1)/2) * exp(-tr(V^-1 * X)/2)] / [2^(ν*d/2) * |V|^(ν/2) * Γ_d(ν/2)]
// where X is a d×d PSD matrix, ν > d-1, |·| denotes the determinant, tr is the
// trace and Γ_d is the multivariate gamma function.
//
// See https://en.wikipedia.org/wiki/Wishart_distribution for more information.
type Wishart struct {
nu float64
src rand.Source
dim int
cholv mat.Cholesky
logdetv float64
upper mat.TriDense
once sync.Once
v *mat.SymDense // only stored if needed
}
// NewWishart returns a new Wishart distribution with the given shape matrix and
// degrees of freedom parameter. NewWishart returns whether the creation was
// successful.
//
// NewWishart panics if nu <= d - 1 where d is the order of v.
func NewWishart(v mat.Symmetric, nu float64, src rand.Source) (*Wishart, bool) {
dim := v.Symmetric()
if nu <= float64(dim-1) {
panic("wishart: nu must be greater than dim-1")
}
var chol mat.Cholesky
ok := chol.Factorize(v)
if !ok {
return nil, false
}
var u mat.TriDense
chol.UTo(&u)
w := &Wishart{
nu: nu,
src: src,
dim: dim,
cholv: chol,
logdetv: chol.LogDet(),
upper: u,
}
return w, true
}
// MeanSym returns the mean matrix of the distribution as a symmetric matrix.
// If x is nil, a new matrix is allocated and returned. If x is not nil, the
// result is stored in-place into x and MeanSym will panic if the order of x
// is not equal to the order of the receiver.
func (w *Wishart) MeanSym(x *mat.SymDense) *mat.SymDense {
if x == nil {
x = mat.NewSymDense(w.dim, nil)
}
d := x.Symmetric()
if d != w.dim {
panic(badDim)
}
w.setV()
x.CopySym(w.v)
x.ScaleSym(w.nu, x)
return x
}
// ProbSym returns the probability of the symmetric matrix x. If x is not positive
// definite (the Cholesky decomposition fails), it has 0 probability.
func (w *Wishart) ProbSym(x mat.Symmetric) float64 {
return math.Exp(w.LogProbSym(x))
}
// LogProbSym returns the log of the probability of the input symmetric matrix.
//
// LogProbSym returns -∞ if the input matrix is not positive definite (the Cholesky
// decomposition fails).
func (w *Wishart) LogProbSym(x mat.Symmetric) float64 {
dim := x.Symmetric()
if dim != w.dim {
panic(badDim)
}
var chol mat.Cholesky
ok := chol.Factorize(x)
if !ok {
return math.Inf(-1)
}
return w.logProbSymChol(&chol)
}
// LogProbSymChol returns the log of the probability of the input symmetric matrix
// given its Cholesky decomposition.
func (w *Wishart) LogProbSymChol(cholX *mat.Cholesky) float64 {
dim := cholX.Size()
if dim != w.dim {
panic(badDim)
}
return w.logProbSymChol(cholX)
}
func (w *Wishart) logProbSymChol(cholX *mat.Cholesky) float64 {
// The PDF is
// p(X) = [|X|^((ν-d-1)/2) * exp(-tr(V^-1 * X)/2)] / [2^(ν*d/2) * |V|^(ν/2) * Γ_d(ν/2)]
// The LogPDF is thus
// (ν-d-1)/2 * log(|X|) - tr(V^-1 * X)/2 - (ν*d/2)*log(2) - ν/2 * log(|V|) - log(Γ_d(ν/2))
logdetx := cholX.LogDet()
// Compute tr(V^-1 * X), using the fact that X = U^T * U.
var u mat.TriDense
cholX.UTo(&u)
var vinvx mat.Dense
err := w.cholv.Solve(&vinvx, u.T())
if err != nil {
return math.Inf(-1)
}
vinvx.Mul(&vinvx, &u)
tr := mat.Trace(&vinvx)
fnu := float64(w.nu)
fdim := float64(w.dim)
return 0.5*((fnu-fdim-1)*logdetx-tr-fnu*fdim*math.Ln2-fnu*w.logdetv) - mathext.MvLgamma(0.5*fnu, w.dim)
}
// RandSym generates a random symmetric matrix from the distribution.
func (w *Wishart) RandSym(x *mat.SymDense) *mat.SymDense {
if x == nil {
x = &mat.SymDense{}
}
var c mat.Cholesky
w.RandChol(&c)
c.ToSym(x)
return x
}
// RandChol generates the Cholesky decomposition of a random matrix from the distribution.
func (w *Wishart) RandChol(c *mat.Cholesky) *mat.Cholesky {
// TODO(btracey): Modify the code if the underlying data from c is exposed
// to avoid the dim^2 allocation here.
// Use the Bartlett Decomposition, which says that
// X ~ L A A^T L^T
// Where A is a lower triangular matrix in which the diagonal of A is
// generated from the square roots of χ^2 random variables, and the
// off-diagonals are generated from standard normal variables.
// The above gives the cholesky decomposition of X, where L_x = L A.
//
// mat64 works with the upper triagular decomposition, so we would like to do
// the same. We can instead say that
// U_x = L_x^T = (L * A)^T = A^T * L^T = A^T * U
// Instead, generate A^T, by using the procedure above, except as an upper
// triangular matrix.
norm := distuv.Normal{
Mu: 0,
Sigma: 1,
Src: w.src,
}
t := mat.NewTriDense(w.dim, mat.Upper, nil)
for i := 0; i < w.dim; i++ {
v := distuv.ChiSquared{
K: w.nu - float64(i),
Src: w.src,
}.Rand()
t.SetTri(i, i, math.Sqrt(v))
}
for i := 0; i < w.dim; i++ {
for j := i + 1; j < w.dim; j++ {
t.SetTri(i, j, norm.Rand())
}
}
t.MulTri(t, &w.upper)
if c == nil {
c = &mat.Cholesky{}
}
c.SetFromU(t)
return c
}
// setV computes and stores the covariance matrix of the distribution.
func (w *Wishart) setV() {
w.once.Do(func() {
w.v = mat.NewSymDense(w.dim, nil)
w.cholv.ToSym(w.v)
})
}