mirror of
https://github.com/gonum/gonum.git
synced 2025-10-10 17:40:30 +08:00
171 lines
3.5 KiB
Go
171 lines
3.5 KiB
Go
// Derived from SciPy's special/cephes/unity.c
|
|
// https://github.com/scipy/scipy/blob/master/scipy/special/cephes/unity.c
|
|
// Made freely available by Stephen L. Moshier without support or guarantee.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
// Copyright ©1984, ©1996 by Stephen L. Moshier
|
|
// Portions Copyright ©2016 The Gonum Authors. All rights reserved.
|
|
|
|
package cephes
|
|
|
|
import "math"
|
|
|
|
// Relative error approximations for function arguments near unity.
|
|
// log1p(x) = log(1+x)
|
|
// expm1(x) = exp(x) - 1
|
|
// cosm1(x) = cos(x) - 1
|
|
// lgam1p(x) = lgam(1+x)
|
|
|
|
const (
|
|
invSqrt2 = 1 / math.Sqrt2
|
|
pi4 = math.Pi / 4
|
|
euler = 0.577215664901532860606512090082402431 // Euler constant
|
|
)
|
|
|
|
// Coefficients for
|
|
// log(1+x) = x - \frac{x^2}{2} + \frac{x^3 lP(x)}{lQ(x)}
|
|
// for
|
|
// \frac{1}{\sqrt{2}} <= x < \sqrt{2}
|
|
// Theoretical peak relative error = 2.32e-20
|
|
var lP = [...]float64{
|
|
4.5270000862445199635215E-5,
|
|
4.9854102823193375972212E-1,
|
|
6.5787325942061044846969E0,
|
|
2.9911919328553073277375E1,
|
|
6.0949667980987787057556E1,
|
|
5.7112963590585538103336E1,
|
|
2.0039553499201281259648E1,
|
|
}
|
|
|
|
var lQ = [...]float64{
|
|
1.5062909083469192043167E1,
|
|
8.3047565967967209469434E1,
|
|
2.2176239823732856465394E2,
|
|
3.0909872225312059774938E2,
|
|
2.1642788614495947685003E2,
|
|
6.0118660497603843919306E1,
|
|
}
|
|
|
|
// log1p computes
|
|
// log(1 + x)
|
|
func log1p(x float64) float64 {
|
|
z := 1 + x
|
|
if z < invSqrt2 || z > math.Sqrt2 {
|
|
return math.Log(z)
|
|
}
|
|
z = x * x
|
|
z = -0.5*z + x*(z*polevl(x, lP[:], 6)/p1evl(x, lQ[:], 6))
|
|
return x + z
|
|
}
|
|
|
|
// log1pmx computes
|
|
// log(1 + x) - x
|
|
func log1pmx(x float64) float64 {
|
|
if math.Abs(x) < 0.5 {
|
|
xfac := x
|
|
res := 0.0
|
|
|
|
var term float64
|
|
for n := 2; n < maxIter; n++ {
|
|
xfac *= -x
|
|
term = xfac / float64(n)
|
|
res += term
|
|
if math.Abs(term) < machEp*math.Abs(res) {
|
|
break
|
|
}
|
|
}
|
|
return res
|
|
}
|
|
return log1p(x) - x
|
|
}
|
|
|
|
// Coefficients for
|
|
// e^x = 1 + \frac{2x eP(x^2)}{eQ(x^2) - eP(x^2)}
|
|
// for
|
|
// -0.5 <= x <= 0.5
|
|
var eP = [...]float64{
|
|
1.2617719307481059087798E-4,
|
|
3.0299440770744196129956E-2,
|
|
9.9999999999999999991025E-1,
|
|
}
|
|
|
|
var eQ = [...]float64{
|
|
3.0019850513866445504159E-6,
|
|
2.5244834034968410419224E-3,
|
|
2.2726554820815502876593E-1,
|
|
2.0000000000000000000897E0,
|
|
}
|
|
|
|
// expm1 computes
|
|
// expm1(x) = e^x - 1
|
|
func expm1(x float64) float64 {
|
|
if math.IsInf(x, 0) {
|
|
if math.IsNaN(x) || x > 0 {
|
|
return x
|
|
}
|
|
return -1
|
|
}
|
|
if x < -0.5 || x > 0.5 {
|
|
return math.Exp(x) - 1
|
|
}
|
|
xx := x * x
|
|
r := x * polevl(xx, eP[:], 2)
|
|
r = r / (polevl(xx, eQ[:], 3) - r)
|
|
return r + r
|
|
}
|
|
|
|
var coscof = [...]float64{
|
|
4.7377507964246204691685E-14,
|
|
-1.1470284843425359765671E-11,
|
|
2.0876754287081521758361E-9,
|
|
-2.7557319214999787979814E-7,
|
|
2.4801587301570552304991E-5,
|
|
-1.3888888888888872993737E-3,
|
|
4.1666666666666666609054E-2,
|
|
}
|
|
|
|
// cosm1 computes
|
|
// cosm1(x) = cos(x) - 1
|
|
func cosm1(x float64) float64 {
|
|
if x < -pi4 || x > pi4 {
|
|
return math.Cos(x) - 1
|
|
}
|
|
xx := x * x
|
|
xx = -0.5*xx + xx*xx*polevl(xx, coscof[:], 6)
|
|
return xx
|
|
}
|
|
|
|
// lgam1pTayler computes
|
|
// lgam(x + 1)
|
|
//around x = 0 using its Taylor series.
|
|
func lgam1pTaylor(x float64) float64 {
|
|
if x == 0 {
|
|
return 0
|
|
}
|
|
res := -euler * x
|
|
xfac := -x
|
|
for n := 2; n < 42; n++ {
|
|
nf := float64(n)
|
|
xfac *= -x
|
|
coeff := Zeta(nf, 1) * xfac / nf
|
|
res += coeff
|
|
if math.Abs(coeff) < machEp*math.Abs(res) {
|
|
break
|
|
}
|
|
}
|
|
|
|
return res
|
|
}
|
|
|
|
// lgam1p computes
|
|
// lgam(x + 1)
|
|
func lgam1p(x float64) float64 {
|
|
if math.Abs(x) <= 0.5 {
|
|
return lgam1pTaylor(x)
|
|
} else if math.Abs(x-1) < 0.5 {
|
|
return math.Log(x) + lgam1pTaylor(x-1)
|
|
}
|
|
return lgam(x + 1)
|
|
}
|