Files
gonum/graph/topo/johnson_cycles.go
Dan Kortschak 46d85b5bdf graph: avoid issues around graph node retrieval subtleties
With the approach to graph node mutation on edge setting the previously
existed there was an issue that the edge last used connect a pair of
nodes could result in a difference in the nodes being returned by a node
query compared to the same node associated with edges returned from an
edge query.

This change avoids dealing with that by making it implementation
dependent and stating this, and by making all the node-storing graphs
we provide mutate the nodes when edges are set.
2018-09-29 19:26:44 +09:30

286 lines
6.6 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package topo
import (
"sort"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/internal/set"
"gonum.org/v1/gonum/graph/iterator"
)
// johnson implements Johnson's "Finding all the elementary
// circuits of a directed graph" algorithm. SIAM J. Comput. 4(1):1975.
//
// Comments in the johnson methods are kept in sync with the comments
// and labels from the paper.
type johnson struct {
adjacent johnsonGraph // SCC adjacency list.
b []set.Ints // Johnson's "B-list".
blocked []bool
s int
stack []graph.Node
result [][]graph.Node
}
// DirectedCyclesIn returns the set of elementary cycles in the graph g.
func DirectedCyclesIn(g graph.Directed) [][]graph.Node {
jg := johnsonGraphFrom(g)
j := johnson{
adjacent: jg,
b: make([]set.Ints, len(jg.orig)),
blocked: make([]bool, len(jg.orig)),
}
// len(j.nodes) is the order of g.
for j.s < len(j.adjacent.orig)-1 {
// We use the previous SCC adjacency to reduce the work needed.
sccs := TarjanSCC(j.adjacent.subgraph(j.s))
// A_k = adjacency structure of strong component K with least
// vertex in subgraph of G induced by {s, s+1, ... ,n}.
j.adjacent = j.adjacent.sccSubGraph(sccs, 2) // Only allow SCCs with >= 2 vertices.
if j.adjacent.order() == 0 {
break
}
// s = least vertex in V_k
if s := j.adjacent.leastVertexIndex(); s < j.s {
j.s = s
}
for i, v := range j.adjacent.orig {
if !j.adjacent.nodes.Has(v.ID()) {
continue
}
if len(j.adjacent.succ[v.ID()]) > 0 {
j.blocked[i] = false
j.b[i] = make(set.Ints)
}
}
//L3:
_ = j.circuit(j.s)
j.s++
}
return j.result
}
// circuit is the CIRCUIT sub-procedure in the paper.
func (j *johnson) circuit(v int) bool {
f := false
n := j.adjacent.orig[v]
j.stack = append(j.stack, n)
j.blocked[v] = true
//L1:
for w := range j.adjacent.succ[n.ID()] {
w := j.adjacent.indexOf(w)
if w == j.s {
// Output circuit composed of stack followed by s.
r := make([]graph.Node, len(j.stack)+1)
copy(r, j.stack)
r[len(r)-1] = j.adjacent.orig[j.s]
j.result = append(j.result, r)
f = true
} else if !j.blocked[w] {
if j.circuit(w) {
f = true
}
}
}
//L2:
if f {
j.unblock(v)
} else {
for w := range j.adjacent.succ[n.ID()] {
j.b[j.adjacent.indexOf(w)].Add(v)
}
}
j.stack = j.stack[:len(j.stack)-1]
return f
}
// unblock is the UNBLOCK sub-procedure in the paper.
func (j *johnson) unblock(u int) {
j.blocked[u] = false
for w := range j.b[u] {
j.b[u].Remove(w)
if j.blocked[w] {
j.unblock(w)
}
}
}
// johnsonGraph is an edge list representation of a graph with helpers
// necessary for Johnson's algorithm
type johnsonGraph struct {
// Keep the original graph nodes and a
// look-up to into the non-sparse
// collection of potentially sparse IDs.
orig []graph.Node
index map[int64]int
nodes set.Int64s
succ map[int64]set.Int64s
}
// johnsonGraphFrom returns a deep copy of the graph g.
func johnsonGraphFrom(g graph.Directed) johnsonGraph {
nodes := graph.NodesOf(g.Nodes())
sort.Sort(ordered.ByID(nodes))
c := johnsonGraph{
orig: nodes,
index: make(map[int64]int, len(nodes)),
nodes: make(set.Int64s, len(nodes)),
succ: make(map[int64]set.Int64s),
}
for i, u := range nodes {
uid := u.ID()
c.index[uid] = i
for _, v := range graph.NodesOf(g.From(uid)) {
if c.succ[uid] == nil {
c.succ[uid] = make(set.Int64s)
c.nodes.Add(uid)
}
c.nodes.Add(v.ID())
c.succ[uid].Add(v.ID())
}
}
return c
}
// order returns the order of the graph.
func (g johnsonGraph) order() int { return g.nodes.Count() }
// indexOf returns the index of the retained node for the given node ID.
func (g johnsonGraph) indexOf(id int64) int {
return g.index[id]
}
// leastVertexIndex returns the index into orig of the least vertex.
func (g johnsonGraph) leastVertexIndex() int {
for _, v := range g.orig {
if g.nodes.Has(v.ID()) {
return g.indexOf(v.ID())
}
}
panic("johnsonCycles: empty set")
}
// subgraph returns a subgraph of g induced by {s, s+1, ... , n}. The
// subgraph is destructively generated in g.
func (g johnsonGraph) subgraph(s int) johnsonGraph {
sn := g.orig[s].ID()
for u, e := range g.succ {
if u < sn {
g.nodes.Remove(u)
delete(g.succ, u)
continue
}
for v := range e {
if v < sn {
g.succ[u].Remove(v)
}
}
}
return g
}
// sccSubGraph returns the graph of the tarjan's strongly connected
// components with each SCC containing at least min vertices.
// sccSubGraph returns nil if there is no SCC with at least min
// members.
func (g johnsonGraph) sccSubGraph(sccs [][]graph.Node, min int) johnsonGraph {
if len(g.nodes) == 0 {
g.nodes = nil
g.succ = nil
return g
}
sub := johnsonGraph{
orig: g.orig,
index: g.index,
nodes: make(set.Int64s),
succ: make(map[int64]set.Int64s),
}
var n int
for _, scc := range sccs {
if len(scc) < min {
continue
}
n++
for _, u := range scc {
for _, v := range scc {
if _, ok := g.succ[u.ID()][v.ID()]; ok {
if sub.succ[u.ID()] == nil {
sub.succ[u.ID()] = make(set.Int64s)
sub.nodes.Add(u.ID())
}
sub.nodes.Add(v.ID())
sub.succ[u.ID()].Add(v.ID())
}
}
}
}
if n == 0 {
g.nodes = nil
g.succ = nil
return g
}
return sub
}
// Nodes is required to satisfy Tarjan.
func (g johnsonGraph) Nodes() graph.Nodes {
n := make([]graph.Node, 0, len(g.nodes))
for id := range g.nodes {
n = append(n, johnsonGraphNode(id))
}
return iterator.NewOrderedNodes(n)
}
// Successors is required to satisfy Tarjan.
func (g johnsonGraph) From(id int64) graph.Nodes {
adj := g.succ[id]
if len(adj) == 0 {
return nil
}
succ := make([]graph.Node, 0, len(adj))
for id := range adj {
succ = append(succ, johnsonGraphNode(id))
}
return iterator.NewOrderedNodes(succ)
}
func (johnsonGraph) Has(int64) bool {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) Node(int64) graph.Node {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) HasEdgeBetween(_, _ int64) bool {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) Edge(_, _ int64) graph.Edge {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) HasEdgeFromTo(_, _ int64) bool {
panic("topo: unintended use of johnsonGraph")
}
func (johnsonGraph) To(int64) graph.Nodes {
panic("topo: unintended use of johnsonGraph")
}
type johnsonGraphNode int64
func (n johnsonGraphNode) ID() int64 { return int64(n) }