Files
gonum/graph/multi/directed.go
Dan Kortschak 48288cca5b graph/{multi,simple}: harmonise code order
Previously there was an attempt to maintain some kind of semantic ordering,
but given the needed complexity of the API this has become untenable. So
just order according to the Godoc — alphabetical for exported methods and
functions. For unexported functions, use judgement.

One method, Has on multi.DirectedGraph, that should not have been present is
deleted.
2018-11-08 07:11:52 +10:30

270 lines
6.6 KiB
Go

// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package multi
import (
"fmt"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/uid"
"gonum.org/v1/gonum/graph/iterator"
)
var (
dg *DirectedGraph
_ graph.Graph = dg
_ graph.Directed = dg
_ graph.Multigraph = dg
_ graph.DirectedMultigraph = dg
_ graph.NodeAdder = dg
_ graph.NodeRemover = dg
_ graph.LineAdder = dg
_ graph.LineRemover = dg
)
// DirectedGraph implements a generalized directed graph.
type DirectedGraph struct {
nodes map[int64]graph.Node
from map[int64]map[int64]map[int64]graph.Line
to map[int64]map[int64]map[int64]graph.Line
nodeIDs uid.Set
lineIDs uid.Set
}
// NewDirectedGraph returns a DirectedGraph.
func NewDirectedGraph() *DirectedGraph {
return &DirectedGraph{
nodes: make(map[int64]graph.Node),
from: make(map[int64]map[int64]map[int64]graph.Line),
to: make(map[int64]map[int64]map[int64]graph.Line),
nodeIDs: uid.NewSet(),
lineIDs: uid.NewSet(),
}
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *DirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.from[n.ID()] = make(map[int64]map[int64]graph.Line)
g.to[n.ID()] = make(map[int64]map[int64]graph.Line)
g.nodeIDs.Use(n.ID())
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
// The returned graph.Edge is a multi.Edge if an edge exists.
func (g *DirectedGraph) Edge(uid, vid int64) graph.Edge {
l := g.Lines(uid, vid)
if l == nil {
return nil
}
return Edge{F: g.Node(uid), T: g.Node(vid), Lines: l}
}
// Edges returns all the edges in the graph. Each edge in the returned slice
// is a multi.Edge.
func (g *DirectedGraph) Edges() graph.Edges {
if len(g.nodes) == 0 {
return nil
}
var edges []graph.Edge
for _, u := range g.nodes {
for _, e := range g.from[u.ID()] {
var lines []graph.Line
for _, l := range e {
lines = append(lines, l)
}
if len(lines) != 0 {
edges = append(edges, Edge{
F: g.Node(u.ID()),
T: g.Node(lines[0].To().ID()),
Lines: iterator.NewOrderedLines(lines),
})
}
}
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *DirectedGraph) From(id int64) graph.Nodes {
if _, ok := g.from[id]; !ok {
return nil
}
from := make([]graph.Node, len(g.from[id]))
i := 0
for vid := range g.from[id] {
from[i] = g.nodes[vid]
i++
}
return iterator.NewOrderedNodes(from)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y without
// considering direction.
func (g *DirectedGraph) HasEdgeBetween(xid, yid int64) bool {
if _, ok := g.from[xid][yid]; ok {
return true
}
_, ok := g.from[yid][xid]
return ok
}
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
func (g *DirectedGraph) HasEdgeFromTo(uid, vid int64) bool {
_, ok := g.from[uid][vid]
return ok
}
// Lines returns the lines from u to v if such any such lines exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *DirectedGraph) Lines(uid, vid int64) graph.Lines {
edge := g.from[uid][vid]
if len(edge) == 0 {
return nil
}
var lines []graph.Line
for _, l := range edge {
lines = append(lines, l)
}
return iterator.NewOrderedLines(lines)
}
// NewLine returns a new Line from the source to the destination node.
// The returned Line will have a graph-unique ID.
// The Line's ID does not become valid in g until the Line is added to g.
func (g *DirectedGraph) NewLine(from, to graph.Node) graph.Line {
return &Line{F: from, T: to, UID: g.lineIDs.NewID()}
}
// NewNode returns a new unique Node to be added to g. The Node's ID does
// not become valid in g until the Node is added to g.
func (g *DirectedGraph) NewNode() graph.Node {
if len(g.nodes) == 0 {
return Node(0)
}
if int64(len(g.nodes)) == uid.Max {
panic("simple: cannot allocate node: no slot")
}
return Node(g.nodeIDs.NewID())
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *DirectedGraph) Node(id int64) graph.Node {
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *DirectedGraph) Nodes() graph.Nodes {
if len(g.nodes) == 0 {
return nil
}
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return iterator.NewOrderedNodes(nodes)
}
// RemoveLine removes the line with the given end point and line IDs from the graph, leaving
// the terminal nodes. If the line does not exist it is a no-op.
func (g *DirectedGraph) RemoveLine(fid, tid, id int64) {
if _, ok := g.nodes[fid]; !ok {
return
}
if _, ok := g.nodes[tid]; !ok {
return
}
delete(g.from[fid][tid], id)
if len(g.from[fid][tid]) == 0 {
delete(g.from[fid], tid)
}
delete(g.to[tid][fid], id)
if len(g.to[tid][fid]) == 0 {
delete(g.to[tid], fid)
}
g.lineIDs.Release(id)
}
// RemoveNode removes the node with the given ID from the graph, as well as any edges attached
// to it. If the node is not in the graph it is a no-op.
func (g *DirectedGraph) RemoveNode(id int64) {
if _, ok := g.nodes[id]; !ok {
return
}
delete(g.nodes, id)
for from := range g.from[id] {
delete(g.to[from], id)
}
delete(g.from, id)
for to := range g.to[id] {
delete(g.from[to], id)
}
delete(g.to, id)
g.nodeIDs.Release(id)
}
// SetLine adds l, a line from one node to another. If the nodes do not exist, they are added
// and are set to the nodes of the line otherwise.
func (g *DirectedGraph) SetLine(l graph.Line) {
var (
from = l.From()
fid = from.ID()
to = l.To()
tid = to.ID()
lid = l.ID()
)
if _, ok := g.nodes[fid]; !ok {
g.AddNode(from)
} else {
g.nodes[fid] = from
}
if g.from[fid][tid] == nil {
g.from[fid][tid] = make(map[int64]graph.Line)
}
if _, ok := g.nodes[tid]; !ok {
g.AddNode(to)
} else {
g.nodes[tid] = to
}
if g.to[tid][fid] == nil {
g.to[tid][fid] = make(map[int64]graph.Line)
}
g.from[fid][tid][lid] = l
g.to[tid][fid][lid] = l
g.lineIDs.Use(lid)
}
// To returns all nodes in g that can reach directly to n.
func (g *DirectedGraph) To(id int64) graph.Nodes {
if _, ok := g.from[id]; !ok {
return nil
}
to := make([]graph.Node, len(g.to[id]))
i := 0
for uid := range g.to[id] {
to[i] = g.nodes[uid]
i++
}
return iterator.NewOrderedNodes(to)
}