mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			337 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2018 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Derived from code by Jeffrey A. Fike at http://adl.stanford.edu/hyperdual/
 | |
| 
 | |
| // The MIT License (MIT)
 | |
| //
 | |
| // Copyright (c) 2006 Jeffrey A. Fike
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| package hyperdual
 | |
| 
 | |
| import "math"
 | |
| 
 | |
| // PowReal returns x**p, the base-x exponential of p.
 | |
| //
 | |
| // Special cases are (in order):
 | |
| //	PowReal(NaN+xϵ₁+yϵ₂, ±0) = 1+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for any x and y
 | |
| //	PowReal(x, ±0) = 1 for any x
 | |
| //	PowReal(1+xϵ₁+yϵ₂, z) = 1+xzϵ₁+yzϵ₂+2xyzϵ₁ϵ₂ for any z
 | |
| //	PowReal(NaN+xϵ₁+yϵ₂, 1) = NaN+xϵ₁+yϵ₂+NaNϵ₁ϵ₂ for any x
 | |
| //	PowReal(x, 1) = x for any x
 | |
| //	PowReal(NaN+xϵ₁+xϵ₂, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂
 | |
| //	PowReal(x, NaN) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂
 | |
| //	PowReal(±0, y) = ±Inf for y an odd integer < 0
 | |
| //	PowReal(±0, -Inf) = +Inf
 | |
| //	PowReal(±0, +Inf) = +0
 | |
| //	PowReal(±0, y) = +Inf for finite y < 0 and not an odd integer
 | |
| //	PowReal(±0, y) = ±0 for y an odd integer > 0
 | |
| //	PowReal(±0, y) = +0 for finite y > 0 and not an odd integer
 | |
| //	PowReal(-1, ±Inf) = 1
 | |
| //	PowReal(x+0ϵ₁+0ϵ₂, +Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1
 | |
| //	PowReal(x+xϵ₁+yϵ₂, +Inf) = +Inf+Infϵ₁+Infϵ₂+NaNϵ₁ϵ₂ for |x| > 1
 | |
| //	PowReal(x, -Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1
 | |
| //	PowReal(x+yϵ₁+zϵ₂, +Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1
 | |
| //	PowReal(x+0ϵ₁+0ϵ₂, -Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1
 | |
| //	PowReal(x, -Inf) = +Inf-Infϵ₁-Infϵ₂+NaNϵ₁ϵ₂ for |x| < 1
 | |
| //	PowReal(+Inf, y) = +Inf for y > 0
 | |
| //	PowReal(+Inf, y) = +0 for y < 0
 | |
| //	PowReal(-Inf, y) = Pow(-0, -y)
 | |
| //	PowReal(x, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for finite x < 0 and finite non-integer y
 | |
| func PowReal(d Number, p float64) Number {
 | |
| 	const tol = 1e-15
 | |
| 
 | |
| 	r := d.Real
 | |
| 	if math.Abs(r) < tol {
 | |
| 		if r >= 0 {
 | |
| 			r = tol
 | |
| 		}
 | |
| 		if r < 0 {
 | |
| 			r = -tol
 | |
| 		}
 | |
| 	}
 | |
| 	deriv := p * math.Pow(r, p-1)
 | |
| 	return Number{
 | |
| 		Real:    math.Pow(d.Real, p),
 | |
| 		E1mag:   d.E1mag * deriv,
 | |
| 		E2mag:   d.E2mag * deriv,
 | |
| 		E1E2mag: d.E1E2mag*deriv + p*(p-1)*d.E1mag*d.E2mag*math.Pow(r, (p-2)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Pow returns x**p, the base-x exponential of p.
 | |
| func Pow(d, p Number) Number {
 | |
| 	return Exp(Mul(p, Log(d)))
 | |
| }
 | |
| 
 | |
| // Sqrt returns the square root of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Sqrt(+Inf) = +Inf
 | |
| //	Sqrt(±0) = (±0+Infϵ₁+Infϵ₂-Infϵ₁ϵ₂)
 | |
| //	Sqrt(x < 0) = NaN
 | |
| //	Sqrt(NaN) = NaN
 | |
| func Sqrt(d Number) Number {
 | |
| 	if d.Real <= 0 {
 | |
| 		if d.Real == 0 {
 | |
| 			return Number{
 | |
| 				Real:    d.Real,
 | |
| 				E1mag:   math.Inf(1),
 | |
| 				E2mag:   math.Inf(1),
 | |
| 				E1E2mag: math.Inf(-1),
 | |
| 			}
 | |
| 		}
 | |
| 		return Number{
 | |
| 			Real:    math.NaN(),
 | |
| 			E1mag:   math.NaN(),
 | |
| 			E2mag:   math.NaN(),
 | |
| 			E1E2mag: math.NaN(),
 | |
| 		}
 | |
| 	}
 | |
| 	return PowReal(d, 0.5)
 | |
| }
 | |
| 
 | |
| // Exp returns e**q, the base-e exponential of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Exp(+Inf) = +Inf
 | |
| //	Exp(NaN) = NaN
 | |
| // Very large values overflow to 0 or +Inf.
 | |
| // Very small values underflow to 1.
 | |
| func Exp(d Number) Number {
 | |
| 	exp := math.Exp(d.Real) // exp is also the derivative.
 | |
| 	return Number{
 | |
| 		Real:    exp,
 | |
| 		E1mag:   exp * d.E1mag,
 | |
| 		E2mag:   exp * d.E2mag,
 | |
| 		E1E2mag: exp * (d.E1E2mag + d.E1mag*d.E2mag),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Log returns the natural logarithm of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Log(+Inf) = (+Inf+0ϵ₁+0ϵ₂-0ϵ₁ϵ₂)
 | |
| //	Log(0) = (-Inf±Infϵ₁±Infϵ₂-Infϵ₁ϵ₂)
 | |
| //	Log(x < 0) = NaN
 | |
| //	Log(NaN) = NaN
 | |
| func Log(d Number) Number {
 | |
| 	switch d.Real {
 | |
| 	case 0:
 | |
| 		return Number{
 | |
| 			Real:    math.Log(d.Real),
 | |
| 			E1mag:   math.Copysign(math.Inf(1), d.Real),
 | |
| 			E2mag:   math.Copysign(math.Inf(1), d.Real),
 | |
| 			E1E2mag: math.Inf(-1),
 | |
| 		}
 | |
| 	case math.Inf(1):
 | |
| 		return Number{
 | |
| 			Real:    math.Log(d.Real),
 | |
| 			E1mag:   0,
 | |
| 			E2mag:   0,
 | |
| 			E1E2mag: negZero,
 | |
| 		}
 | |
| 	}
 | |
| 	if d.Real < 0 {
 | |
| 		return Number{
 | |
| 			Real:    math.NaN(),
 | |
| 			E1mag:   math.NaN(),
 | |
| 			E2mag:   math.NaN(),
 | |
| 			E1E2mag: math.NaN(),
 | |
| 		}
 | |
| 	}
 | |
| 	deriv1 := d.E1mag / d.Real
 | |
| 	deriv2 := d.E2mag / d.Real
 | |
| 	return Number{
 | |
| 		Real:    math.Log(d.Real),
 | |
| 		E1mag:   deriv1,
 | |
| 		E2mag:   deriv2,
 | |
| 		E1E2mag: d.E1E2mag/d.Real - (deriv1 * deriv2),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Sin returns the sine of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Sin(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂)
 | |
| //	Sin(±Inf) = NaN
 | |
| //	Sin(NaN) = NaN
 | |
| func Sin(d Number) Number {
 | |
| 	if d.Real == 0 {
 | |
| 		return Number{
 | |
| 			Real:    d.Real,
 | |
| 			E1mag:   d.E1mag,
 | |
| 			E2mag:   d.E2mag,
 | |
| 			E1E2mag: -d.Real,
 | |
| 		}
 | |
| 	}
 | |
| 	fn := math.Sin(d.Real)
 | |
| 	deriv := math.Cos(d.Real)
 | |
| 	return Number{
 | |
| 		Real:    fn,
 | |
| 		E1mag:   deriv * d.E1mag,
 | |
| 		E2mag:   deriv * d.E2mag,
 | |
| 		E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Cos returns the cosine of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Cos(±Inf) = NaN
 | |
| //	Cos(NaN) = NaN
 | |
| func Cos(d Number) Number {
 | |
| 	fn := math.Cos(d.Real)
 | |
| 	deriv := -math.Sin(d.Real)
 | |
| 	return Number{
 | |
| 		Real:    fn,
 | |
| 		E1mag:   deriv * d.E1mag,
 | |
| 		E2mag:   deriv * d.E2mag,
 | |
| 		E1E2mag: deriv*d.E1E2mag - fn*d.E1mag*d.E2mag,
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Tan returns the tangent of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Tan(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂)
 | |
| //	Tan(±Inf) = NaN
 | |
| //	Tan(NaN) = NaN
 | |
| func Tan(d Number) Number {
 | |
| 	if d.Real == 0 {
 | |
| 		return Number{
 | |
| 			Real:    d.Real,
 | |
| 			E1mag:   d.E1mag,
 | |
| 			E2mag:   d.E2mag,
 | |
| 			E1E2mag: d.Real,
 | |
| 		}
 | |
| 	}
 | |
| 	fn := math.Tan(d.Real)
 | |
| 	deriv := 1 + fn*fn
 | |
| 	return Number{
 | |
| 		Real:    fn,
 | |
| 		E1mag:   deriv * d.E1mag,
 | |
| 		E2mag:   deriv * d.E2mag,
 | |
| 		E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(2*fn*deriv),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Asin returns the inverse sine of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Asin(±0) = (±0+Nϵ₁+Nϵ₂±0ϵ₁ϵ₂)
 | |
| //	Asin(±1) = (±Inf+Infϵ₁+Infϵ₂±Infϵ₁ϵ₂)
 | |
| //	Asin(x) = NaN if x < -1 or x > 1
 | |
| func Asin(d Number) Number {
 | |
| 	if d.Real == 0 {
 | |
| 		return Number{
 | |
| 			Real:    d.Real,
 | |
| 			E1mag:   d.E1mag,
 | |
| 			E2mag:   d.E2mag,
 | |
| 			E1E2mag: d.Real,
 | |
| 		}
 | |
| 	} else if m := math.Abs(d.Real); m >= 1 {
 | |
| 		if m == 1 {
 | |
| 			return Number{
 | |
| 				Real:    math.Asin(d.Real),
 | |
| 				E1mag:   math.Inf(1),
 | |
| 				E2mag:   math.Inf(1),
 | |
| 				E1E2mag: math.Copysign(math.Inf(1), d.Real),
 | |
| 			}
 | |
| 		}
 | |
| 		return Number{
 | |
| 			Real:    math.NaN(),
 | |
| 			E1mag:   math.NaN(),
 | |
| 			E2mag:   math.NaN(),
 | |
| 			E1E2mag: math.NaN(),
 | |
| 		}
 | |
| 	}
 | |
| 	fn := math.Asin(d.Real)
 | |
| 	deriv1 := 1 - d.Real*d.Real
 | |
| 	deriv := 1 / math.Sqrt(deriv1)
 | |
| 	return Number{
 | |
| 		Real:    fn,
 | |
| 		E1mag:   deriv * d.E1mag,
 | |
| 		E2mag:   deriv * d.E2mag,
 | |
| 		E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(d.Real*math.Pow(deriv1, -1.5)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Acos returns the inverse cosine of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Acos(-1) = (Pi-Infϵ₁-Infϵ₂+Infϵ₁ϵ₂)
 | |
| //	Acos(1) = (0-Infϵ₁-Infϵ₂-Infϵ₁ϵ₂)
 | |
| //	Acos(x) = NaN if x < -1 or x > 1
 | |
| func Acos(d Number) Number {
 | |
| 	if m := math.Abs(d.Real); m >= 1 {
 | |
| 		if m == 1 {
 | |
| 			return Number{
 | |
| 				Real:    math.Acos(d.Real),
 | |
| 				E1mag:   math.Inf(-1),
 | |
| 				E2mag:   math.Inf(-1),
 | |
| 				E1E2mag: math.Copysign(math.Inf(1), -d.Real),
 | |
| 			}
 | |
| 		}
 | |
| 		return Number{
 | |
| 			Real:    math.NaN(),
 | |
| 			E1mag:   math.NaN(),
 | |
| 			E2mag:   math.NaN(),
 | |
| 			E1E2mag: math.NaN(),
 | |
| 		}
 | |
| 	}
 | |
| 	fn := math.Acos(d.Real)
 | |
| 	deriv1 := 1 - d.Real*d.Real
 | |
| 	deriv := -1 / math.Sqrt(deriv1)
 | |
| 	return Number{
 | |
| 		Real:    fn,
 | |
| 		E1mag:   deriv * d.E1mag,
 | |
| 		E2mag:   deriv * d.E2mag,
 | |
| 		E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-d.Real*math.Pow(deriv1, -1.5)),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Atan returns the inverse tangent of d.
 | |
| //
 | |
| // Special cases are:
 | |
| //	Atan(±0) = (±0+Nϵ₁+Nϵ₂∓0ϵ₁ϵ₂)
 | |
| //	Atan(±Inf) = (±Pi/2+0ϵ₁+0ϵ₂∓0ϵ₁ϵ₂)
 | |
| func Atan(d Number) Number {
 | |
| 	if d.Real == 0 {
 | |
| 		return Number{
 | |
| 			Real:    d.Real,
 | |
| 			E1mag:   d.E1mag,
 | |
| 			E2mag:   d.E2mag,
 | |
| 			E1E2mag: -d.Real,
 | |
| 		}
 | |
| 	}
 | |
| 	fn := math.Atan(d.Real)
 | |
| 	deriv1 := 1 + d.Real*d.Real
 | |
| 	deriv := 1 / deriv1
 | |
| 	return Number{
 | |
| 		Real:    fn,
 | |
| 		E1mag:   deriv * d.E1mag,
 | |
| 		E2mag:   deriv * d.E2mag,
 | |
| 		E1E2mag: deriv*d.E1E2mag + d.E1mag*d.E2mag*(-2*d.Real/(deriv1*deriv1)),
 | |
| 	}
 | |
| }
 | 
