mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
83 lines
2.0 KiB
Go
83 lines
2.0 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package native
|
|
|
|
import (
|
|
"math"
|
|
|
|
"github.com/gonum/blas"
|
|
"github.com/gonum/blas/blas64"
|
|
"github.com/gonum/lapack"
|
|
)
|
|
|
|
// Dtrcon estimates the reciprocal of the condition number of a triangular matrix A.
|
|
// The condition number computed may be based on the 1-norm or the ∞-norm.
|
|
//
|
|
// work is a temporary data slice of length at least 3*n and Dtrcon will panic otherwise.
|
|
//
|
|
// iwork is a temporary data slice of length at least n and Dtrcon will panic otherwise.
|
|
func (impl Implementation) Dtrcon(norm lapack.MatrixNorm, uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int, work []float64, iwork []int) float64 {
|
|
if norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum {
|
|
panic(badNorm)
|
|
}
|
|
if uplo != blas.Upper && uplo != blas.Lower {
|
|
panic(badUplo)
|
|
}
|
|
if diag != blas.NonUnit && diag != blas.Unit {
|
|
panic(badDiag)
|
|
}
|
|
if len(work) < 3*n {
|
|
panic(badWork)
|
|
}
|
|
if len(iwork) < n {
|
|
panic(badWork)
|
|
}
|
|
if n == 0 {
|
|
return 1
|
|
}
|
|
bi := blas64.Implementation()
|
|
|
|
var rcond float64
|
|
smlnum := dlamchS * float64(n)
|
|
|
|
anorm := impl.Dlantr(norm, uplo, diag, n, n, a, lda, work)
|
|
|
|
if anorm <= 0 {
|
|
return rcond
|
|
}
|
|
var ainvnm float64
|
|
var normin bool
|
|
kase1 := 2
|
|
if norm == lapack.MaxColumnSum {
|
|
kase1 = 1
|
|
}
|
|
var kase int
|
|
isave := new([3]int)
|
|
var scale float64
|
|
for {
|
|
ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave)
|
|
if kase == 0 {
|
|
if ainvnm != 0 {
|
|
rcond = (1 / anorm) / ainvnm
|
|
}
|
|
return rcond
|
|
}
|
|
if kase == kase1 {
|
|
scale = impl.Dlatrs(uplo, blas.NoTrans, diag, normin, n, a, lda, work, work[2*n:])
|
|
} else {
|
|
scale = impl.Dlatrs(uplo, blas.Trans, diag, normin, n, a, lda, work, work[2*n:])
|
|
}
|
|
normin = true
|
|
if scale != 1 {
|
|
ix := bi.Idamax(n, work, 1)
|
|
xnorm := math.Abs(work[ix])
|
|
if scale == 0 || scale < xnorm*smlnum {
|
|
return rcond
|
|
}
|
|
impl.Drscl(n, scale, work, 1)
|
|
}
|
|
}
|
|
}
|