Files
gonum/lapack/native/dlaexc.go
2017-05-23 00:02:46 -06:00

262 lines
7.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"math"
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
"github.com/gonum/lapack"
)
// Dlaexc swaps two adjacent diagonal blocks of order 1 or 2 in an n×n upper
// quasi-triangular matrix T by an orthogonal similarity transformation.
//
// T must be in Schur canonical form, that is, block upper triangular with 1×1
// and 2×2 diagonal blocks; each 2×2 diagonal block has its diagonal elements
// equal and its off-diagonal elements of opposite sign. On return, T will
// contain the updated matrix again in Schur canonical form.
//
// If wantq is true, the transformation is accumulated in the n×n matrix Q,
// otherwise Q is not referenced.
//
// j1 is the index of the first row of the first block. n1 and n2 are the order
// of the first and second block, respectively.
//
// work must have length at least n, otherwise Dlaexc will panic.
//
// If ok is false, the transformed matrix T would be too far from Schur form.
// The blocks are not swapped, and T and Q are not modified.
//
// If n1 and n2 are both equal to 1, Dlaexc will always return true.
//
// Dlaexc is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlaexc(wantq bool, n int, t []float64, ldt int, q []float64, ldq int, j1, n1, n2 int, work []float64) (ok bool) {
checkMatrix(n, n, t, ldt)
if wantq {
checkMatrix(n, n, q, ldq)
}
if j1 < 0 || n <= j1 {
panic("lapack: index j1 out of range")
}
if len(work) < n {
panic(badWork)
}
if n1 < 0 || 2 < n1 {
panic("lapack: invalid value of n1")
}
if n2 < 0 || 2 < n2 {
panic("lapack: invalid value of n2")
}
if n == 0 || n1 == 0 || n2 == 0 {
return true
}
if j1+n1 >= n {
// TODO(vladimir-ch): Reference LAPACK does this check whether
// the start of the second block is in the matrix T. It returns
// true if it is not and moreover it does not check whether the
// whole second block fits into T. This does not feel
// satisfactory. The only caller of Dlaexc is Dtrexc, so if the
// caller makes sure that this does not happen, we could be
// stricter here.
return true
}
j2 := j1 + 1
j3 := j1 + 2
bi := blas64.Implementation()
if n1 == 1 && n2 == 1 {
// Swap two 1×1 blocks.
t11 := t[j1*ldt+j1]
t22 := t[j2*ldt+j2]
// Determine the transformation to perform the interchange.
cs, sn, _ := impl.Dlartg(t[j1*ldt+j2], t22-t11)
// Apply transformation to the matrix T.
if n-j3 > 0 {
bi.Drot(n-j3, t[j1*ldt+j3:], 1, t[j2*ldt+j3:], 1, cs, sn)
}
if j1 > 0 {
bi.Drot(j1, t[j1:], ldt, t[j2:], ldt, cs, sn)
}
t[j1*ldt+j1] = t22
t[j2*ldt+j2] = t11
if wantq {
// Accumulate transformation in the matrix Q.
bi.Drot(n, q[j1:], ldq, q[j2:], ldq, cs, sn)
}
return true
}
// Swapping involves at least one 2×2 block.
//
// Copy the diagonal block of order n1+n2 to the local array d and
// compute its norm.
nd := n1 + n2
var d [16]float64
const ldd = 4
impl.Dlacpy(blas.All, nd, nd, t[j1*ldt+j1:], ldt, d[:], ldd)
dnorm := impl.Dlange(lapack.MaxAbs, nd, nd, d[:], ldd, work)
// Compute machine-dependent threshold for test for accepting swap.
eps := dlamchP
thresh := math.Max(10*eps*dnorm, dlamchS/eps)
// Solve T11*X - X*T22 = scale*T12 for X.
var x [4]float64
const ldx = 2
scale, _, _ := impl.Dlasy2(false, false, -1, n1, n2, d[:], ldd, d[n1*ldd+n1:], ldd, d[n1:], ldd, x[:], ldx)
// Swap the adjacent diagonal blocks.
switch {
case n1 == 1 && n2 == 2:
// Generate elementary reflector H so that
// ( scale, X11, X12 ) H = ( 0, 0, * )
u := [3]float64{scale, x[0], 1}
_, tau := impl.Dlarfg(3, x[1], u[:2], 1)
t11 := t[j1*ldt+j1]
// Perform swap provisionally on diagonal block in d.
impl.Dlarfx(blas.Left, 3, 3, u[:], tau, d[:], ldd, work)
impl.Dlarfx(blas.Right, 3, 3, u[:], tau, d[:], ldd, work)
// Test whether to reject swap.
if math.Max(math.Abs(d[2*ldd]), math.Max(math.Abs(d[2*ldd+1]), math.Abs(d[2*ldd+2]-t11))) > thresh {
return false
}
// Accept swap: apply transformation to the entire matrix T.
impl.Dlarfx(blas.Left, 3, n-j1, u[:], tau, t[j1*ldt+j1:], ldt, work)
impl.Dlarfx(blas.Right, j2+1, 3, u[:], tau, t[j1:], ldt, work)
t[j3*ldt+j1] = 0
t[j3*ldt+j2] = 0
t[j3*ldt+j3] = t11
if wantq {
// Accumulate transformation in the matrix Q.
impl.Dlarfx(blas.Right, n, 3, u[:], tau, q[j1:], ldq, work)
}
case n1 == 2 && n2 == 1:
// Generate elementary reflector H so that:
// H ( -X11 ) = ( * )
// ( -X21 ) = ( 0 )
// ( scale ) = ( 0 )
u := [3]float64{1, -x[ldx], scale}
_, tau := impl.Dlarfg(3, -x[0], u[1:], 1)
t33 := t[j3*ldt+j3]
// Perform swap provisionally on diagonal block in D.
impl.Dlarfx(blas.Left, 3, 3, u[:], tau, d[:], ldd, work)
impl.Dlarfx(blas.Right, 3, 3, u[:], tau, d[:], ldd, work)
// Test whether to reject swap.
if math.Max(math.Abs(d[ldd]), math.Max(math.Abs(d[2*ldd]), math.Abs(d[0]-t33))) > thresh {
return false
}
// Accept swap: apply transformation to the entire matrix T.
impl.Dlarfx(blas.Right, j3+1, 3, u[:], tau, t[j1:], ldt, work)
impl.Dlarfx(blas.Left, 3, n-j1-1, u[:], tau, t[j1*ldt+j2:], ldt, work)
t[j1*ldt+j1] = t33
t[j2*ldt+j1] = 0
t[j3*ldt+j1] = 0
if wantq {
// Accumulate transformation in the matrix Q.
impl.Dlarfx(blas.Right, n, 3, u[:], tau, q[j1:], ldq, work)
}
default: // n1 == 2 && n2 == 2
// Generate elementary reflectors H_1 and H_2 so that:
// H_2 H_1 ( -X11 -X12 ) = ( * * )
// ( -X21 -X22 ) ( 0 * )
// ( scale 0 ) ( 0 0 )
// ( 0 scale ) ( 0 0 )
u1 := [3]float64{1, -x[ldx], scale}
_, tau1 := impl.Dlarfg(3, -x[0], u1[1:], 1)
temp := -tau1 * (x[1] + u1[1]*x[ldx+1])
u2 := [3]float64{1, -temp * u1[2], scale}
_, tau2 := impl.Dlarfg(3, -temp*u1[1]-x[ldx+1], u2[1:], 1)
// Perform swap provisionally on diagonal block in D.
impl.Dlarfx(blas.Left, 3, 4, u1[:], tau1, d[:], ldd, work)
impl.Dlarfx(blas.Right, 4, 3, u1[:], tau1, d[:], ldd, work)
impl.Dlarfx(blas.Left, 3, 4, u2[:], tau2, d[ldd:], ldd, work)
impl.Dlarfx(blas.Right, 4, 3, u2[:], tau2, d[1:], ldd, work)
// Test whether to reject swap.
m1 := math.Max(math.Abs(d[2*ldd]), math.Abs(d[2*ldd+1]))
m2 := math.Max(math.Abs(d[3*ldd]), math.Abs(d[3*ldd+1]))
if math.Max(m1, m2) > thresh {
return false
}
// Accept swap: apply transformation to the entire matrix T.
j4 := j1 + 3
impl.Dlarfx(blas.Left, 3, n-j1, u1[:], tau1, t[j1*ldt+j1:], ldt, work)
impl.Dlarfx(blas.Right, j4+1, 3, u1[:], tau1, t[j1:], ldt, work)
impl.Dlarfx(blas.Left, 3, n-j1, u2[:], tau2, t[j2*ldt+j1:], ldt, work)
impl.Dlarfx(blas.Right, j4+1, 3, u2[:], tau2, t[j2:], ldt, work)
t[j3*ldt+j1] = 0
t[j3*ldt+j2] = 0
t[j4*ldt+j1] = 0
t[j4*ldt+j2] = 0
if wantq {
// Accumulate transformation in the matrix Q.
impl.Dlarfx(blas.Right, n, 3, u1[:], tau1, q[j1:], ldq, work)
impl.Dlarfx(blas.Right, n, 3, u2[:], tau2, q[j2:], ldq, work)
}
}
if n2 == 2 {
// Standardize new 2×2 block T11.
a, b := t[j1*ldt+j1], t[j1*ldt+j2]
c, d := t[j2*ldt+j1], t[j2*ldt+j2]
var cs, sn float64
t[j1*ldt+j1], t[j1*ldt+j2], t[j2*ldt+j1], t[j2*ldt+j2], _, _, _, _, cs, sn = impl.Dlanv2(a, b, c, d)
if n-j1-2 > 0 {
bi.Drot(n-j1-2, t[j1*ldt+j1+2:], 1, t[j2*ldt+j1+2:], 1, cs, sn)
}
if j1 > 0 {
bi.Drot(j1, t[j1:], ldt, t[j2:], ldt, cs, sn)
}
if wantq {
bi.Drot(n, q[j1:], ldq, q[j2:], ldq, cs, sn)
}
}
if n1 == 2 {
// Standardize new 2×2 block T22.
j3 := j1 + n2
j4 := j3 + 1
a, b := t[j3*ldt+j3], t[j3*ldt+j4]
c, d := t[j4*ldt+j3], t[j4*ldt+j4]
var cs, sn float64
t[j3*ldt+j3], t[j3*ldt+j4], t[j4*ldt+j3], t[j4*ldt+j4], _, _, _, _, cs, sn = impl.Dlanv2(a, b, c, d)
if n-j3-2 > 0 {
bi.Drot(n-j3-2, t[j3*ldt+j3+2:], 1, t[j4*ldt+j3+2:], 1, cs, sn)
}
bi.Drot(j3, t[j3:], ldt, t[j4:], ldt, cs, sn)
if wantq {
bi.Drot(n, q[j3:], ldq, q[j4:], ldq, cs, sn)
}
}
return true
}