Files
gonum/lapack/native/dgebd2.go
2017-05-23 00:02:46 -06:00

75 lines
2.1 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import "github.com/gonum/blas"
// Dgebd2 reduces an m×n matrix A to upper or lower bidiagonal form by an orthogonal
// transformation.
// Q^T * A * P = B
// if m >= n, B is upper diagonal, otherwise B is lower bidiagonal.
// d is the diagonal, len = min(m,n)
// e is the off-diagonal len = min(m,n)-1
//
// Dgebd2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgebd2(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64) {
checkMatrix(m, n, a, lda)
if len(d) < min(m, n) {
panic(badD)
}
if len(e) < min(m, n)-1 {
panic(badE)
}
if len(tauQ) < min(m, n) {
panic(badTauQ)
}
if len(tauP) < min(m, n) {
panic(badTauP)
}
if len(work) < max(m, n) {
panic(badWork)
}
if m >= n {
for i := 0; i < n; i++ {
a[i*lda+i], tauQ[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min(i+1, m-1)*lda+i:], lda)
d[i] = a[i*lda+i]
a[i*lda+i] = 1
// Apply H_i to A[i:m, i+1:n] from the left.
if i < n-1 {
impl.Dlarf(blas.Left, m-i, n-i-1, a[i*lda+i:], lda, tauQ[i], a[i*lda+i+1:], lda, work)
}
a[i*lda+i] = d[i]
if i < n-1 {
a[i*lda+i+1], tauP[i] = impl.Dlarfg(n-i-1, a[i*lda+i+1], a[i*lda+min(i+2, n-1):], 1)
e[i] = a[i*lda+i+1]
a[i*lda+i+1] = 1
impl.Dlarf(blas.Right, m-i-1, n-i-1, a[i*lda+i+1:], 1, tauP[i], a[(i+1)*lda+i+1:], lda, work)
a[i*lda+i+1] = e[i]
} else {
tauP[i] = 0
}
}
return
}
for i := 0; i < m; i++ {
a[i*lda+i], tauP[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1)
d[i] = a[i*lda+i]
a[i*lda+i] = 1
if i < m-1 {
impl.Dlarf(blas.Right, m-i-1, n-i, a[i*lda+i:], 1, tauP[i], a[(i+1)*lda+i:], lda, work)
}
a[i*lda+i] = d[i]
if i < m-1 {
a[(i+1)*lda+i], tauQ[i] = impl.Dlarfg(m-i-1, a[(i+1)*lda+i], a[min(i+2, m-1)*lda+i:], lda)
e[i] = a[(i+1)*lda+i]
a[(i+1)*lda+i] = 1
impl.Dlarf(blas.Left, m-i-1, n-i-1, a[(i+1)*lda+i:], lda, tauQ[i], a[(i+1)*lda+i+1:], lda, work)
a[(i+1)*lda+i] = e[i]
} else {
tauQ[i] = 0
}
}
}