Files
gonum/lapack/native/dgebal.go
2017-05-23 00:02:46 -06:00

229 lines
6.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"math"
"github.com/gonum/blas/blas64"
"github.com/gonum/lapack"
)
// Dgebal balances an n×n matrix A. Balancing consists of two stages, permuting
// and scaling. Both steps are optional and depend on the value of job.
//
// Permuting consists of applying a permutation matrix P such that the matrix
// that results from P^T*A*P takes the upper block triangular form
// [ T1 X Y ]
// P^T A P = [ 0 B Z ],
// [ 0 0 T2 ]
// where T1 and T2 are upper triangular matrices and B contains at least one
// nonzero off-diagonal element in each row and column. The indices ilo and ihi
// mark the starting and ending columns of the submatrix B. The eigenvalues of A
// isolated in the first 0 to ilo-1 and last ihi+1 to n-1 elements on the
// diagonal can be read off without any roundoff error.
//
// Scaling consists of applying a diagonal similarity transformation D such that
// D^{-1}*B*D has the 1-norm of each row and its corresponding column nearly
// equal. The output matrix is
// [ T1 X*D Y ]
// [ 0 inv(D)*B*D inv(D)*Z ].
// [ 0 0 T2 ]
// Scaling may reduce the 1-norm of the matrix, and improve the accuracy of
// the computed eigenvalues and/or eigenvectors.
//
// job specifies the operations that will be performed on A.
// If job is lapack.None, Dgebal sets scale[i] = 1 for all i and returns ilo=0, ihi=n-1.
// If job is lapack.Permute, only permuting will be done.
// If job is lapack.Scale, only scaling will be done.
// If job is lapack.PermuteScale, both permuting and scaling will be done.
//
// On return, if job is lapack.Permute or lapack.PermuteScale, it will hold that
// A[i,j] == 0, for i > j and j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}.
// If job is lapack.None or lapack.Scale, or if n == 0, it will hold that
// ilo == 0 and ihi == n-1.
//
// On return, scale will contain information about the permutations and scaling
// factors applied to A. If π(j) denotes the index of the column interchanged
// with column j, and D[j,j] denotes the scaling factor applied to column j,
// then
// scale[j] == π(j), for j ∈ {0, ..., ilo-1, ihi+1, ..., n-1},
// == D[j,j], for j ∈ {ilo, ..., ihi}.
// scale must have length equal to n, otherwise Dgebal will panic.
//
// Dgebal is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgebal(job lapack.Job, n int, a []float64, lda int, scale []float64) (ilo, ihi int) {
switch job {
default:
panic(badJob)
case lapack.None, lapack.Permute, lapack.Scale, lapack.PermuteScale:
}
checkMatrix(n, n, a, lda)
if len(scale) != n {
panic("lapack: bad length of scale")
}
ilo = 0
ihi = n - 1
if n == 0 || job == lapack.None {
for i := range scale {
scale[i] = 1
}
return ilo, ihi
}
bi := blas64.Implementation()
swapped := true
if job == lapack.Scale {
goto scaling
}
// Permutation to isolate eigenvalues if possible.
//
// Search for rows isolating an eigenvalue and push them down.
for swapped {
swapped = false
rows:
for i := ihi; i >= 0; i-- {
for j := 0; j <= ihi; j++ {
if i == j {
continue
}
if a[i*lda+j] != 0 {
continue rows
}
}
// Row i has only zero off-diagonal elements in the
// block A[ilo:ihi+1,ilo:ihi+1].
scale[ihi] = float64(i)
if i != ihi {
bi.Dswap(ihi+1, a[i:], lda, a[ihi:], lda)
bi.Dswap(n, a[i*lda:], 1, a[ihi*lda:], 1)
}
if ihi == 0 {
scale[0] = 1
return ilo, ihi
}
ihi--
swapped = true
break
}
}
// Search for columns isolating an eigenvalue and push them left.
swapped = true
for swapped {
swapped = false
columns:
for j := ilo; j <= ihi; j++ {
for i := ilo; i <= ihi; i++ {
if i == j {
continue
}
if a[i*lda+j] != 0 {
continue columns
}
}
// Column j has only zero off-diagonal elements in the
// block A[ilo:ihi+1,ilo:ihi+1].
scale[ilo] = float64(j)
if j != ilo {
bi.Dswap(ihi+1, a[j:], lda, a[ilo:], lda)
bi.Dswap(n-ilo, a[j*lda+ilo:], 1, a[ilo*lda+ilo:], 1)
}
swapped = true
ilo++
break
}
}
scaling:
for i := ilo; i <= ihi; i++ {
scale[i] = 1
}
if job == lapack.Permute {
return ilo, ihi
}
// Balance the submatrix in rows ilo to ihi.
const (
// sclfac should be a power of 2 to avoid roundoff errors.
// Elements of scale are restricted to powers of sclfac,
// therefore the matrix will be only nearly balanced.
sclfac = 2
// factor determines the minimum reduction of the row and column
// norms that is considered non-negligible. It must be less than 1.
factor = 0.95
)
sfmin1 := dlamchS / dlamchP
sfmax1 := 1 / sfmin1
sfmin2 := sfmin1 * sclfac
sfmax2 := 1 / sfmin2
// Iterative loop for norm reduction.
var conv bool
for !conv {
conv = true
for i := ilo; i <= ihi; i++ {
c := bi.Dnrm2(ihi-ilo+1, a[ilo*lda+i:], lda)
r := bi.Dnrm2(ihi-ilo+1, a[i*lda+ilo:], 1)
ica := bi.Idamax(ihi+1, a[i:], lda)
ca := math.Abs(a[ica*lda+i])
ira := bi.Idamax(n-ilo, a[i*lda+ilo:], 1)
ra := math.Abs(a[i*lda+ilo+ira])
// Guard against zero c or r due to underflow.
if c == 0 || r == 0 {
continue
}
g := r / sclfac
f := 1.0
s := c + r
for c < g && math.Max(f, math.Max(c, ca)) < sfmax2 && math.Min(r, math.Min(g, ra)) > sfmin2 {
if math.IsNaN(c + f + ca + r + g + ra) {
// Panic if NaN to avoid infinite loop.
panic("lapack: NaN")
}
f *= sclfac
c *= sclfac
ca *= sclfac
g /= sclfac
r /= sclfac
ra /= sclfac
}
g = c / sclfac
for r <= g && math.Max(r, ra) < sfmax2 && math.Min(math.Min(f, c), math.Min(g, ca)) > sfmin2 {
f /= sclfac
c /= sclfac
ca /= sclfac
g /= sclfac
r *= sclfac
ra *= sclfac
}
if c+r >= factor*s {
// Reduction would be negligible.
continue
}
if f < 1 && scale[i] < 1 && f*scale[i] <= sfmin1 {
continue
}
if f > 1 && scale[i] > 1 && scale[i] >= sfmax1/f {
continue
}
// Now balance.
scale[i] *= f
bi.Dscal(n-ilo, 1/f, a[i*lda+ilo:], 1)
bi.Dscal(ihi+1, f, a[i:], lda)
conv = false
}
}
return ilo, ihi
}