mirror of
https://github.com/gonum/gonum.git
synced 2025-10-27 01:00:26 +08:00
Add copyright header to doc.go Keep original comment style (e.g. line comments and block comments). Fix doc comments containing multiple line comments. Remove vanity imports from all files except doc.go. Fixes #12. The source code of fixdocs is located at: https://play.golang.org/p/7RtYLzldsO
158 lines
4.3 KiB
Go
158 lines
4.3 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package quad
|
|
|
|
import (
|
|
"math"
|
|
"sync"
|
|
)
|
|
|
|
// FixedLocationer computes a set of quadrature locations and weights and stores
|
|
// them in-place into x and weight respectively. The number of points generated is equal to
|
|
// the len(x). The weights and locations should be chosen such that
|
|
// int_min^max f(x) dx ≈ \sum_i w_i f(x_i)
|
|
type FixedLocationer interface {
|
|
FixedLocations(x, weight []float64, min, max float64)
|
|
}
|
|
|
|
// FixedLocationSingle returns the location and weight for element k in a
|
|
// fixed quadrature rule with n total samples and integral bounds from min to max.
|
|
type FixedLocationSingler interface {
|
|
FixedLocationSingle(n, k int, min, max float64) (x, weight float64)
|
|
}
|
|
|
|
// Fixed approximates the integral of the function f from min to max using a fixed
|
|
// n-point quadrature rule. During evaluation, f will be evaluated n times using
|
|
// the weights and locations specified by rule. That is, Fixed estimates
|
|
// int_min^max f(x) dx ≈ \sum_i w_i f(x_i)
|
|
// If rule is nil, an acceptable default is chosen, otherwise it is
|
|
// assumed that the properties of the integral match the assumptions of rule.
|
|
// For example, Legendre assumes that the integration bounds are finite. If
|
|
// rule is also a FixedLocationSingler, the quadrature points are computed
|
|
// individually rather than as a unit.
|
|
//
|
|
// If concurrent <= 0, f is evaluated serially, while if concurrent > 0, f
|
|
// may be evaluated with at most concurrent simultaneous evaluations.
|
|
//
|
|
// min must be less than or equal to max, and n must be positive, otherwise
|
|
// Fixed will panic.
|
|
func Fixed(f func(float64) float64, min, max float64, n int, rule FixedLocationer, concurrent int) float64 {
|
|
// TODO(btracey): When there are Hermite polynomial quadrature, add an additional
|
|
// example to the documentation comment that talks about weight functions.
|
|
if n <= 0 {
|
|
panic("quad: non-positive number of locations")
|
|
}
|
|
if min > max {
|
|
panic("quad: min > max")
|
|
}
|
|
if min == max {
|
|
return 0
|
|
}
|
|
intfunc := f
|
|
// If rule is non-nil it is assumed that the function and the constraints
|
|
// of rule are aligned. If it is nil, wrap the function and do something
|
|
// reasonable.
|
|
// TODO(btracey): Replace wrapping with other quadrature rules when
|
|
// we have rules that support infinite-bound integrals.
|
|
if rule == nil {
|
|
// int_a^b f(x)dx = int_u^-1(a)^u^-1(b) f(u(t))u'(t)dt
|
|
switch {
|
|
case math.IsInf(max, 1) && math.IsInf(min, -1):
|
|
// u(t) = (t/(1-t^2))
|
|
min = -1
|
|
max = 1
|
|
intfunc = func(x float64) float64 {
|
|
v := 1 - x*x
|
|
return f(x/v) * (1 + x*x) / (v * v)
|
|
}
|
|
case math.IsInf(max, 1):
|
|
// u(t) = a + t / (1-t)
|
|
a := min
|
|
min = 0
|
|
max = 1
|
|
intfunc = func(x float64) float64 {
|
|
v := 1 - x
|
|
return f(a+x/v) / (v * v)
|
|
}
|
|
case math.IsInf(min, -1):
|
|
// u(t) = a - (1-t)/t
|
|
a := max
|
|
min = 0
|
|
max = 1
|
|
intfunc = func(x float64) float64 {
|
|
return f(a-(1-x)/x) / (x * x)
|
|
}
|
|
}
|
|
rule = Legendre{}
|
|
}
|
|
singler, isSingler := rule.(FixedLocationSingler)
|
|
|
|
var xs, weights []float64
|
|
if !isSingler {
|
|
xs = make([]float64, n)
|
|
weights = make([]float64, n)
|
|
rule.FixedLocations(xs, weights, min, max)
|
|
}
|
|
|
|
if concurrent > n {
|
|
concurrent = n
|
|
}
|
|
|
|
if concurrent <= 0 {
|
|
var integral float64
|
|
// Evaluate in serial.
|
|
if isSingler {
|
|
for k := 0; k < n; k++ {
|
|
x, weight := singler.FixedLocationSingle(n, k, min, max)
|
|
integral += weight * intfunc(x)
|
|
}
|
|
return integral
|
|
}
|
|
for i, x := range xs {
|
|
integral += weights[i] * intfunc(x)
|
|
}
|
|
return integral
|
|
}
|
|
|
|
// Evaluate concurrently
|
|
tasks := make(chan int)
|
|
|
|
// Launch distributor
|
|
go func() {
|
|
for i := 0; i < n; i++ {
|
|
tasks <- i
|
|
}
|
|
close(tasks)
|
|
}()
|
|
|
|
var mux sync.Mutex
|
|
var integral float64
|
|
var wg sync.WaitGroup
|
|
wg.Add(concurrent)
|
|
for i := 0; i < concurrent; i++ {
|
|
// Launch workers
|
|
go func() {
|
|
defer wg.Done()
|
|
var subIntegral float64
|
|
for k := range tasks {
|
|
var x, weight float64
|
|
if isSingler {
|
|
x, weight = singler.FixedLocationSingle(n, k, min, max)
|
|
} else {
|
|
x = xs[k]
|
|
weight = weights[k]
|
|
}
|
|
f := intfunc(x)
|
|
subIntegral += f * weight
|
|
}
|
|
mux.Lock()
|
|
integral += subIntegral
|
|
mux.Unlock()
|
|
}()
|
|
}
|
|
wg.Wait()
|
|
return integral
|
|
}
|