Files
gonum/optimize/minimize.go
Brendan Tracey c07f678f3f optimize: Change initialization, remove Needser, and update Problem f… (#779)
* optimize: Change initialization, remove Needser, and update Problem function calls

We need a better way to express the Hessian function call so that sparse Hessians can be provided. This change updates the Problem function definitions to allow an arbitrary Symmetric matrix. With this change, we need to change how Location is used, so that we do not allocate a SymDense. Once this location is changed, we no longer need Needser to allocate the appropriate memory, and can shift that to initialization, further simplifying the interfaces.

A 'fake' Problem is passed to Method to continue to make it impossible for the Method to call the functions directly.

Fixes #727, #593.
2019-02-01 15:26:26 +00:00

575 lines
19 KiB
Go

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package optimize
import (
"fmt"
"math"
"time"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
const (
nonpositiveDimension string = "optimize: non-positive input dimension"
negativeTasks string = "optimize: negative input number of tasks"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
// Task is a type to communicate between the Method and the outer
// calling script.
type Task struct {
ID int
Op Operation
*Location
}
// Location represents a location in the optimization procedure.
type Location struct {
X []float64
F float64
Gradient []float64
Hessian mat.Symmetric
}
// Method is a type which can search for an optimum of an objective function.
type Method interface {
// Init initializes the method for optimization. The inputs are
// the problem dimension and number of available concurrent tasks.
//
// Init returns the number of concurrent processes to use, which must be
// less than or equal to tasks.
Init(dim, tasks int) (concurrent int)
// Run runs an optimization. The method sends Tasks on
// the operation channel (for performing function evaluations, major
// iterations, etc.). The result of the tasks will be returned on Result.
// See the documentation for Operation types for the possible operations.
//
// The caller of Run will signal the termination of the optimization
// (i.e. convergence from user settings) by sending a task with a PostIteration
// Op field on result. More tasks may still be sent on operation after this
// occurs, but only MajorIteration operations will still be conducted
// appropriately. Thus, it can not be guaranteed that all Evaluations sent
// on operation will be evaluated, however if an Evaluation is started,
// the results of that evaluation will be sent on results.
//
// The Method must read from the result channel until it is closed.
// During this, the Method may want to send new MajorIteration(s) on
// operation. Method then must close operation, and return from Run.
// These steps must establish a "happens-before" relationship between result
// being closed (externally) and Run closing operation, for example
// by using a range loop to read from result even if no results are expected.
//
// The last parameter to Run is a slice of tasks with length equal to
// the return from Init. Task has an ID field which may be
// set and modified by Method, and must not be modified by the caller.
// The first element of tasks contains information about the initial location.
// The Location.X field is always valid. The Operation field specifies which
// other values of Location are known. If Operation == NoOperation, none of
// the values should be used, otherwise the Evaluation operations will be
// composed to specify the valid fields. Methods are free to use or
// ignore these values.
//
// Successful execution of an Operation may require the Method to modify
// fields a Location. MajorIteration calls will not modify the values in
// the Location, but Evaluation operations will. Methods are encouraged to
// leave Location fields untouched to allow memory re-use. If data needs to
// be stored, the respective field should be set to nil -- Methods should
// not allocate Location memory themselves.
//
// Method may have its own specific convergence criteria, which can
// be communicated using a MethodDone operation. This will trigger a
// PostIteration to be sent on result, and the MethodDone task will not be
// returned on result. The Method must implement Statuser, and the
// call to Status must return a Status other than NotTerminated.
//
// The operation and result tasks are guaranteed to have a buffer length
// equal to the return from Init.
Run(operation chan<- Task, result <-chan Task, tasks []Task)
// Uses checks if the Method is suited to the optimization problem. The
// input is the available functions in Problem to call, and the returns are
// the functions which may be used and an error if there is a mismatch
// between the Problem and the Method's capabilities.
Uses(has Available) (uses Available, err error)
}
// Minimize uses an optimizer to search for a minimum of a function. A
// maximization problem can be transformed into a minimization problem by
// multiplying the function by -1.
//
// The first argument represents the problem to be minimized. Its fields are
// routines that evaluate the objective function, gradient, and other
// quantities related to the problem. The objective function, p.Func, must not
// be nil. The optimization method used may require other fields to be non-nil
// as specified by method.Needs. Minimize will panic if these are not met. The
// method can be determined automatically from the supplied problem which is
// described below.
//
// If p.Status is not nil, it is called before every evaluation. If the
// returned Status is other than NotTerminated or if the error is not nil, the
// optimization run is terminated.
//
// The second argument specifies the initial location for the optimization.
// Some Methods do not require an initial location, but initX must still be
// specified for the dimension of the optimization problem.
//
// The third argument contains the settings for the minimization. If settings
// is nil, the zero value will be used, see the documentation of the Settings
// type for more information, and see the warning below. All settings will be
// honored for all Methods, even if that setting is counter-productive to the
// method. Minimize cannot guarantee strict adherence to the evaluation bounds
// specified when performing concurrent evaluations and updates.
//
// The final argument is the optimization method to use. If method == nil, then
// an appropriate default is chosen based on the properties of the other arguments
// (dimension, gradient-free or gradient-based, etc.). If method is not nil,
// Minimize panics if the Problem is not consistent with the Method (Uses
// returns an error).
//
// Minimize returns a Result struct and any error that occurred. See the
// documentation of Result for more information.
//
// See the documentation for Method for the details on implementing a method.
//
// Be aware that the default settings of Minimize are to accurately find the
// minimum. For certain functions and optimization methods, this can take many
// function evaluations. The Settings input struct can be used to limit this,
// for example by modifying the maximum function evaluations or gradient tolerance.
func Minimize(p Problem, initX []float64, settings *Settings, method Method) (*Result, error) {
startTime := time.Now()
if method == nil {
method = getDefaultMethod(&p)
}
if settings == nil {
settings = &Settings{}
}
stats := &Stats{}
dim := len(initX)
err := checkOptimization(p, dim, settings.Recorder)
if err != nil {
return nil, err
}
optLoc := newLocation(dim) // This must have an allocated X field.
optLoc.F = math.Inf(1)
initOp, initLoc := getInitLocation(dim, initX, settings.InitValues)
converger := settings.Converger
if converger == nil {
converger = defaultFunctionConverge()
}
converger.Init(dim)
stats.Runtime = time.Since(startTime)
// Send initial location to Recorder
if settings.Recorder != nil {
err = settings.Recorder.Record(optLoc, InitIteration, stats)
if err != nil {
return nil, err
}
}
// Run optimization
var status Status
status, err = minimize(&p, method, settings, converger, stats, initOp, initLoc, optLoc, startTime)
// Cleanup and collect results
if settings.Recorder != nil && err == nil {
err = settings.Recorder.Record(optLoc, PostIteration, stats)
}
stats.Runtime = time.Since(startTime)
return &Result{
Location: *optLoc,
Stats: *stats,
Status: status,
}, err
}
func getDefaultMethod(p *Problem) Method {
if p.Grad != nil {
return &LBFGS{}
}
return &NelderMead{}
}
// minimize performs an optimization. minimize updates the settings and optLoc,
// and returns the final Status and error.
func minimize(prob *Problem, method Method, settings *Settings, converger Converger, stats *Stats, initOp Operation, initLoc, optLoc *Location, startTime time.Time) (Status, error) {
dim := len(optLoc.X)
nTasks := settings.Concurrent
if nTasks == 0 {
nTasks = 1
}
has := availFromProblem(*prob)
_, initErr := method.Uses(has)
if initErr != nil {
panic(fmt.Sprintf("optimize: specified method inconsistent with Problem: %v", initErr))
}
newNTasks := method.Init(dim, nTasks)
if newNTasks > nTasks {
panic("optimize: too many tasks returned by Method")
}
nTasks = newNTasks
// Launch the method. The method communicates tasks using the operations
// channel, and results is used to return the evaluated results.
operations := make(chan Task, nTasks)
results := make(chan Task, nTasks)
go func() {
tasks := make([]Task, nTasks)
tasks[0].Location = initLoc
tasks[0].Op = initOp
for i := 1; i < len(tasks); i++ {
tasks[i].Location = newLocation(dim)
}
method.Run(operations, results, tasks)
}()
// Algorithmic Overview:
// There are three pieces to performing a concurrent optimization,
// the distributor, the workers, and the stats combiner. At a high level,
// the distributor reads in tasks sent by method, sending evaluations to the
// workers, and forwarding other operations to the statsCombiner. The workers
// read these forwarded evaluation tasks, evaluate the relevant parts of Problem
// and forward the results on to the stats combiner. The stats combiner reads
// in results from the workers, as well as tasks from the distributor, and
// uses them to update optimization statistics (function evaluations, etc.)
// and to check optimization convergence.
//
// The complicated part is correctly shutting down the optimization. The
// procedure is as follows. First, the stats combiner closes done and sends
// a PostIteration to the method. The distributor then reads that done has
// been closed, and closes the channel with the workers. At this point, no
// more evaluation operations will be executed. As the workers finish their
// evaluations, they forward the results onto the stats combiner, and then
// signal their shutdown to the stats combiner. When all workers have successfully
// finished, the stats combiner closes the results channel, signaling to the
// method that all results have been collected. At this point, the method
// may send MajorIteration(s) to update an optimum location based on these
// last returned results, and then the method will close the operations channel.
// The Method must ensure that the closing of results happens before the
// closing of operations in order to ensure proper shutdown order.
// Now that no more tasks will be commanded by the method, the distributor
// closes statsChan, and with no more statistics to update the optimization
// concludes.
workerChan := make(chan Task) // Delegate tasks to the workers.
statsChan := make(chan Task) // Send evaluation updates.
done := make(chan struct{}) // Communicate the optimization is done.
// Read tasks from the method and distribute as appropriate.
distributor := func() {
for {
select {
case task := <-operations:
switch task.Op {
case InitIteration:
panic("optimize: Method returned InitIteration")
case PostIteration:
panic("optimize: Method returned PostIteration")
case NoOperation, MajorIteration, MethodDone:
statsChan <- task
default:
if !task.Op.isEvaluation() {
panic("optimize: expecting evaluation operation")
}
workerChan <- task
}
case <-done:
// No more evaluations will be sent, shut down the workers, and
// read the final tasks.
close(workerChan)
for task := range operations {
if task.Op == MajorIteration {
statsChan <- task
}
}
close(statsChan)
return
}
}
}
go distributor()
// Evaluate the Problem concurrently.
worker := func() {
x := make([]float64, dim)
for task := range workerChan {
evaluate(prob, task.Location, task.Op, x)
statsChan <- task
}
// Signal successful worker completion.
statsChan <- Task{Op: signalDone}
}
for i := 0; i < nTasks; i++ {
go worker()
}
var (
workersDone int // effective wg for the workers
status Status
err error
finalStatus Status
finalError error
)
// Update optimization statistics and check convergence.
var methodDone bool
for task := range statsChan {
switch task.Op {
default:
if !task.Op.isEvaluation() {
panic("minimize: evaluation task expected")
}
updateEvaluationStats(stats, task.Op)
status, err = checkEvaluationLimits(prob, stats, settings)
case signalDone:
workersDone++
if workersDone == nTasks {
close(results)
}
continue
case NoOperation:
// Just send the task back.
case MajorIteration:
status = performMajorIteration(optLoc, task.Location, stats, converger, startTime, settings)
case MethodDone:
methodDone = true
status = MethodConverge
}
if settings.Recorder != nil && status == NotTerminated && err == nil {
stats.Runtime = time.Since(startTime)
// Allow err to be overloaded if the Recorder fails.
err = settings.Recorder.Record(task.Location, task.Op, stats)
if err != nil {
status = Failure
}
}
// If this is the first termination status, trigger the conclusion of
// the optimization.
if status != NotTerminated || err != nil {
select {
case <-done:
default:
finalStatus = status
finalError = err
results <- Task{
Op: PostIteration,
}
close(done)
}
}
// Send the result back to the Problem if there are still active workers.
if workersDone != nTasks && task.Op != MethodDone {
results <- task
}
}
// This code block is here rather than above to ensure Status() is not called
// before Method.Run closes operations.
if methodDone {
statuser, ok := method.(Statuser)
if !ok {
panic("optimize: method returned MethodDone but is not a Statuser")
}
finalStatus, finalError = statuser.Status()
if finalStatus == NotTerminated {
panic("optimize: method returned MethodDone but a NotTerminated status")
}
}
return finalStatus, finalError
}
func defaultFunctionConverge() *FunctionConverge {
return &FunctionConverge{
Absolute: 1e-10,
Iterations: 100,
}
}
// newLocation allocates a new locatian structure with an X field of the
// appropriate size.
func newLocation(dim int) *Location {
return &Location{
X: make([]float64, dim),
}
}
// getInitLocation checks the validity of initLocation and initOperation and
// returns the initial values as a *Location.
func getInitLocation(dim int, initX []float64, initValues *Location) (Operation, *Location) {
loc := newLocation(dim)
if initX == nil {
if initValues != nil {
panic("optimize: initValues is non-nil but no initial location specified")
}
return NoOperation, loc
}
copy(loc.X, initX)
if initValues == nil {
return NoOperation, loc
} else {
if initValues.X != nil {
panic("optimize: location specified in InitValues (only use InitX)")
}
}
loc.F = initValues.F
op := FuncEvaluation
if initValues.Gradient != nil {
if len(initValues.Gradient) != dim {
panic("optimize: initial gradient does not match problem dimension")
}
loc.Gradient = initValues.Gradient
op |= GradEvaluation
}
if initValues.Hessian != nil {
if initValues.Hessian.Symmetric() != dim {
panic("optimize: initial Hessian does not match problem dimension")
}
loc.Hessian = initValues.Hessian
op |= HessEvaluation
}
return op, loc
}
func checkOptimization(p Problem, dim int, recorder Recorder) error {
if p.Func == nil {
panic(badProblem)
}
if dim <= 0 {
panic("optimize: impossible problem dimension")
}
if p.Status != nil {
_, err := p.Status()
if err != nil {
return err
}
}
if recorder != nil {
err := recorder.Init()
if err != nil {
return err
}
}
return nil
}
// evaluate evaluates the routines specified by the Operation at loc.X, and stores
// the answer into loc. loc.X is copied into x before evaluating in order to
// prevent the routines from modifying it.
func evaluate(p *Problem, loc *Location, op Operation, x []float64) {
if !op.isEvaluation() {
panic(fmt.Sprintf("optimize: invalid evaluation %v", op))
}
copy(x, loc.X)
if op&FuncEvaluation != 0 {
loc.F = p.Func(x)
}
if op&GradEvaluation != 0 {
loc.Gradient = p.Grad(loc.Gradient, x)
}
if op&HessEvaluation != 0 {
loc.Hessian = p.Hess(loc.Hessian, x)
}
}
// updateEvaluationStats updates the statistics based on the operation.
func updateEvaluationStats(stats *Stats, op Operation) {
if op&FuncEvaluation != 0 {
stats.FuncEvaluations++
}
if op&GradEvaluation != 0 {
stats.GradEvaluations++
}
if op&HessEvaluation != 0 {
stats.HessEvaluations++
}
}
// checkLocationConvergence checks if the current optimal location satisfies
// any of the convergence criteria based on the function location.
//
// checkLocationConvergence returns NotTerminated if the Location does not satisfy
// the convergence criteria given by settings. Otherwise a corresponding status is
// returned.
// Unlike checkLimits, checkConvergence is called only at MajorIterations.
func checkLocationConvergence(loc *Location, settings *Settings, converger Converger) Status {
if math.IsInf(loc.F, -1) {
return FunctionNegativeInfinity
}
if loc.Gradient != nil && settings.GradientThreshold > 0 {
norm := floats.Norm(loc.Gradient, math.Inf(1))
if norm < settings.GradientThreshold {
return GradientThreshold
}
}
return converger.Converged(loc)
}
// checkEvaluationLimits checks the optimization limits after an evaluation
// Operation. It checks the number of evaluations (of various kinds) and checks
// the status of the Problem, if applicable.
func checkEvaluationLimits(p *Problem, stats *Stats, settings *Settings) (Status, error) {
if p.Status != nil {
status, err := p.Status()
if err != nil || status != NotTerminated {
return status, err
}
}
if settings.FuncEvaluations > 0 && stats.FuncEvaluations >= settings.FuncEvaluations {
return FunctionEvaluationLimit, nil
}
if settings.GradEvaluations > 0 && stats.GradEvaluations >= settings.GradEvaluations {
return GradientEvaluationLimit, nil
}
if settings.HessEvaluations > 0 && stats.HessEvaluations >= settings.HessEvaluations {
return HessianEvaluationLimit, nil
}
return NotTerminated, nil
}
// checkIterationLimits checks the limits on iterations affected by MajorIteration.
func checkIterationLimits(loc *Location, stats *Stats, settings *Settings) Status {
if settings.MajorIterations > 0 && stats.MajorIterations >= settings.MajorIterations {
return IterationLimit
}
if settings.Runtime > 0 && stats.Runtime >= settings.Runtime {
return RuntimeLimit
}
return NotTerminated
}
// performMajorIteration does all of the steps needed to perform a MajorIteration.
// It increments the iteration count, updates the optimal location, and checks
// the necessary convergence criteria.
func performMajorIteration(optLoc, loc *Location, stats *Stats, converger Converger, startTime time.Time, settings *Settings) Status {
optLoc.F = loc.F
copy(optLoc.X, loc.X)
if loc.Gradient == nil {
optLoc.Gradient = nil
} else {
if optLoc.Gradient == nil {
optLoc.Gradient = make([]float64, len(loc.Gradient))
}
copy(optLoc.Gradient, loc.Gradient)
}
stats.MajorIterations++
stats.Runtime = time.Since(startTime)
status := checkLocationConvergence(optLoc, settings, converger)
if status != NotTerminated {
return status
}
return checkIterationLimits(optLoc, stats, settings)
}