mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 03:26:04 +08:00

* optimize: Change initialization, remove Needser, and update Problem function calls We need a better way to express the Hessian function call so that sparse Hessians can be provided. This change updates the Problem function definitions to allow an arbitrary Symmetric matrix. With this change, we need to change how Location is used, so that we do not allocate a SymDense. Once this location is changed, we no longer need Needser to allocate the appropriate memory, and can shift that to initialization, further simplifying the interfaces. A 'fake' Problem is passed to Method to continue to make it impossible for the Method to call the functions directly. Fixes #727, #593.
200 lines
5.0 KiB
Go
200 lines
5.0 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package optimize
|
|
|
|
import (
|
|
"gonum.org/v1/gonum/floats"
|
|
)
|
|
|
|
var (
|
|
_ Method = (*LBFGS)(nil)
|
|
_ localMethod = (*LBFGS)(nil)
|
|
)
|
|
|
|
// LBFGS implements the limited-memory BFGS method for gradient-based
|
|
// unconstrained minimization.
|
|
//
|
|
// It stores a modified version of the inverse Hessian approximation H
|
|
// implicitly from the last Store iterations while the normal BFGS method
|
|
// stores and manipulates H directly as a dense matrix. Therefore LBFGS is more
|
|
// appropriate than BFGS for large problems as the cost of LBFGS scales as
|
|
// O(Store * dim) while BFGS scales as O(dim^2). The "forgetful" nature of
|
|
// LBFGS may also make it perform better than BFGS for functions with Hessians
|
|
// that vary rapidly spatially.
|
|
type LBFGS struct {
|
|
// Linesearcher selects suitable steps along the descent direction.
|
|
// Accepted steps should satisfy the strong Wolfe conditions.
|
|
// If Linesearcher is nil, a reasonable default will be chosen.
|
|
Linesearcher Linesearcher
|
|
// Store is the size of the limited-memory storage.
|
|
// If Store is 0, it will be defaulted to 15.
|
|
Store int
|
|
// GradStopThreshold sets the threshold for stopping if the gradient norm
|
|
// gets too small. If GradStopThreshold is 0 it is defaulted to 1e-12, and
|
|
// if it is NaN the setting is not used.
|
|
GradStopThreshold float64
|
|
|
|
status Status
|
|
err error
|
|
|
|
ls *LinesearchMethod
|
|
|
|
dim int // Dimension of the problem
|
|
x []float64 // Location at the last major iteration
|
|
grad []float64 // Gradient at the last major iteration
|
|
|
|
// History
|
|
oldest int // Index of the oldest element of the history
|
|
y [][]float64 // Last Store values of y
|
|
s [][]float64 // Last Store values of s
|
|
rho []float64 // Last Store values of rho
|
|
a []float64 // Cache of Hessian updates
|
|
}
|
|
|
|
func (l *LBFGS) Status() (Status, error) {
|
|
return l.status, l.err
|
|
}
|
|
|
|
func (*LBFGS) Uses(has Available) (uses Available, err error) {
|
|
return has.gradient()
|
|
}
|
|
|
|
func (l *LBFGS) Init(dim, tasks int) int {
|
|
l.status = NotTerminated
|
|
l.err = nil
|
|
return 1
|
|
}
|
|
|
|
func (l *LBFGS) Run(operation chan<- Task, result <-chan Task, tasks []Task) {
|
|
l.status, l.err = localOptimizer{}.run(l, l.GradStopThreshold, operation, result, tasks)
|
|
close(operation)
|
|
return
|
|
}
|
|
|
|
func (l *LBFGS) initLocal(loc *Location) (Operation, error) {
|
|
if l.Linesearcher == nil {
|
|
l.Linesearcher = &Bisection{}
|
|
}
|
|
if l.Store == 0 {
|
|
l.Store = 15
|
|
}
|
|
|
|
if l.ls == nil {
|
|
l.ls = &LinesearchMethod{}
|
|
}
|
|
l.ls.Linesearcher = l.Linesearcher
|
|
l.ls.NextDirectioner = l
|
|
|
|
return l.ls.Init(loc)
|
|
}
|
|
|
|
func (l *LBFGS) iterateLocal(loc *Location) (Operation, error) {
|
|
return l.ls.Iterate(loc)
|
|
}
|
|
|
|
func (l *LBFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) {
|
|
dim := len(loc.X)
|
|
l.dim = dim
|
|
l.oldest = 0
|
|
|
|
l.a = resize(l.a, l.Store)
|
|
l.rho = resize(l.rho, l.Store)
|
|
l.y = l.initHistory(l.y)
|
|
l.s = l.initHistory(l.s)
|
|
|
|
l.x = resize(l.x, dim)
|
|
copy(l.x, loc.X)
|
|
|
|
l.grad = resize(l.grad, dim)
|
|
copy(l.grad, loc.Gradient)
|
|
|
|
copy(dir, loc.Gradient)
|
|
floats.Scale(-1, dir)
|
|
return 1 / floats.Norm(dir, 2)
|
|
}
|
|
|
|
func (l *LBFGS) initHistory(hist [][]float64) [][]float64 {
|
|
c := cap(hist)
|
|
if c < l.Store {
|
|
n := make([][]float64, l.Store-c)
|
|
hist = append(hist[:c], n...)
|
|
}
|
|
hist = hist[:l.Store]
|
|
for i := range hist {
|
|
hist[i] = resize(hist[i], l.dim)
|
|
for j := range hist[i] {
|
|
hist[i][j] = 0
|
|
}
|
|
}
|
|
return hist
|
|
}
|
|
|
|
func (l *LBFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) {
|
|
// Uses two-loop correction as described in
|
|
// Nocedal, J., Wright, S.: Numerical Optimization (2nd ed). Springer (2006), chapter 7, page 178.
|
|
|
|
if len(loc.X) != l.dim {
|
|
panic("lbfgs: unexpected size mismatch")
|
|
}
|
|
if len(loc.Gradient) != l.dim {
|
|
panic("lbfgs: unexpected size mismatch")
|
|
}
|
|
if len(dir) != l.dim {
|
|
panic("lbfgs: unexpected size mismatch")
|
|
}
|
|
|
|
y := l.y[l.oldest]
|
|
floats.SubTo(y, loc.Gradient, l.grad)
|
|
s := l.s[l.oldest]
|
|
floats.SubTo(s, loc.X, l.x)
|
|
sDotY := floats.Dot(s, y)
|
|
l.rho[l.oldest] = 1 / sDotY
|
|
|
|
l.oldest = (l.oldest + 1) % l.Store
|
|
|
|
copy(l.x, loc.X)
|
|
copy(l.grad, loc.Gradient)
|
|
copy(dir, loc.Gradient)
|
|
|
|
// Start with the most recent element and go backward,
|
|
for i := 0; i < l.Store; i++ {
|
|
idx := l.oldest - i - 1
|
|
if idx < 0 {
|
|
idx += l.Store
|
|
}
|
|
l.a[idx] = l.rho[idx] * floats.Dot(l.s[idx], dir)
|
|
floats.AddScaled(dir, -l.a[idx], l.y[idx])
|
|
}
|
|
|
|
// Scale the initial Hessian.
|
|
gamma := sDotY / floats.Dot(y, y)
|
|
floats.Scale(gamma, dir)
|
|
|
|
// Start with the oldest element and go forward.
|
|
for i := 0; i < l.Store; i++ {
|
|
idx := i + l.oldest
|
|
if idx >= l.Store {
|
|
idx -= l.Store
|
|
}
|
|
beta := l.rho[idx] * floats.Dot(l.y[idx], dir)
|
|
floats.AddScaled(dir, l.a[idx]-beta, l.s[idx])
|
|
}
|
|
|
|
// dir contains H^{-1} * g, so flip the direction for minimization.
|
|
floats.Scale(-1, dir)
|
|
|
|
return 1
|
|
}
|
|
|
|
func (*LBFGS) needs() struct {
|
|
Gradient bool
|
|
Hessian bool
|
|
} {
|
|
return struct {
|
|
Gradient bool
|
|
Hessian bool
|
|
}{true, false}
|
|
}
|