mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 23:02:42 +08:00

* optimize: Remove Local function This change removes the Local function. In order to do so, this changes the previous LocalGlobal wrapper to LocalController to allow Local methods to be used as a Global optimizer. This adds methods to all of the Local methods in order to implement GlobalMethod, and changes the tests accordingly. The next commit will fix all of the names
187 lines
4.6 KiB
Go
187 lines
4.6 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package optimize
|
|
|
|
import (
|
|
"gonum.org/v1/gonum/floats"
|
|
)
|
|
|
|
// LBFGS implements the limited-memory BFGS method for gradient-based
|
|
// unconstrained minimization.
|
|
//
|
|
// It stores a modified version of the inverse Hessian approximation H
|
|
// implicitly from the last Store iterations while the normal BFGS method
|
|
// stores and manipulates H directly as a dense matrix. Therefore LBFGS is more
|
|
// appropriate than BFGS for large problems as the cost of LBFGS scales as
|
|
// O(Store * dim) while BFGS scales as O(dim^2). The "forgetful" nature of
|
|
// LBFGS may also make it perform better than BFGS for functions with Hessians
|
|
// that vary rapidly spatially.
|
|
type LBFGS struct {
|
|
// Linesearcher selects suitable steps along the descent direction.
|
|
// Accepted steps should satisfy the strong Wolfe conditions.
|
|
// If Linesearcher is nil, a reasonable default will be chosen.
|
|
Linesearcher Linesearcher
|
|
// Store is the size of the limited-memory storage.
|
|
// If Store is 0, it will be defaulted to 15.
|
|
Store int
|
|
|
|
status Status
|
|
err error
|
|
|
|
ls *LinesearchMethod
|
|
|
|
dim int // Dimension of the problem
|
|
x []float64 // Location at the last major iteration
|
|
grad []float64 // Gradient at the last major iteration
|
|
|
|
// History
|
|
oldest int // Index of the oldest element of the history
|
|
y [][]float64 // Last Store values of y
|
|
s [][]float64 // Last Store values of s
|
|
rho []float64 // Last Store values of rho
|
|
a []float64 // Cache of Hessian updates
|
|
}
|
|
|
|
func (l *LBFGS) Status() (Status, error) {
|
|
return l.status, l.err
|
|
}
|
|
|
|
func (l *LBFGS) InitGlobal(dim, tasks int) int {
|
|
l.status = NotTerminated
|
|
l.err = nil
|
|
return 1
|
|
}
|
|
|
|
func (l *LBFGS) RunGlobal(operation chan<- GlobalTask, result <-chan GlobalTask, tasks []GlobalTask) {
|
|
l.status, l.err = localOptimizer{}.runGlobal(l, operation, result, tasks)
|
|
close(operation)
|
|
return
|
|
}
|
|
|
|
func (l *LBFGS) Init(loc *Location) (Operation, error) {
|
|
if l.Linesearcher == nil {
|
|
l.Linesearcher = &Bisection{}
|
|
}
|
|
if l.Store == 0 {
|
|
l.Store = 15
|
|
}
|
|
|
|
if l.ls == nil {
|
|
l.ls = &LinesearchMethod{}
|
|
}
|
|
l.ls.Linesearcher = l.Linesearcher
|
|
l.ls.NextDirectioner = l
|
|
|
|
return l.ls.Init(loc)
|
|
}
|
|
|
|
func (l *LBFGS) Iterate(loc *Location) (Operation, error) {
|
|
return l.ls.Iterate(loc)
|
|
}
|
|
|
|
func (l *LBFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) {
|
|
dim := len(loc.X)
|
|
l.dim = dim
|
|
l.oldest = 0
|
|
|
|
l.a = resize(l.a, l.Store)
|
|
l.rho = resize(l.rho, l.Store)
|
|
l.y = l.initHistory(l.y)
|
|
l.s = l.initHistory(l.s)
|
|
|
|
l.x = resize(l.x, dim)
|
|
copy(l.x, loc.X)
|
|
|
|
l.grad = resize(l.grad, dim)
|
|
copy(l.grad, loc.Gradient)
|
|
|
|
copy(dir, loc.Gradient)
|
|
floats.Scale(-1, dir)
|
|
return 1 / floats.Norm(dir, 2)
|
|
}
|
|
|
|
func (l *LBFGS) initHistory(hist [][]float64) [][]float64 {
|
|
c := cap(hist)
|
|
if c < l.Store {
|
|
n := make([][]float64, l.Store-c)
|
|
hist = append(hist[:c], n...)
|
|
}
|
|
hist = hist[:l.Store]
|
|
for i := range hist {
|
|
hist[i] = resize(hist[i], l.dim)
|
|
for j := range hist[i] {
|
|
hist[i][j] = 0
|
|
}
|
|
}
|
|
return hist
|
|
}
|
|
|
|
func (l *LBFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) {
|
|
// Uses two-loop correction as described in
|
|
// Nocedal, J., Wright, S.: Numerical Optimization (2nd ed). Springer (2006), chapter 7, page 178.
|
|
|
|
if len(loc.X) != l.dim {
|
|
panic("lbfgs: unexpected size mismatch")
|
|
}
|
|
if len(loc.Gradient) != l.dim {
|
|
panic("lbfgs: unexpected size mismatch")
|
|
}
|
|
if len(dir) != l.dim {
|
|
panic("lbfgs: unexpected size mismatch")
|
|
}
|
|
|
|
y := l.y[l.oldest]
|
|
floats.SubTo(y, loc.Gradient, l.grad)
|
|
s := l.s[l.oldest]
|
|
floats.SubTo(s, loc.X, l.x)
|
|
sDotY := floats.Dot(s, y)
|
|
l.rho[l.oldest] = 1 / sDotY
|
|
|
|
l.oldest = (l.oldest + 1) % l.Store
|
|
|
|
copy(l.x, loc.X)
|
|
copy(l.grad, loc.Gradient)
|
|
copy(dir, loc.Gradient)
|
|
|
|
// Start with the most recent element and go backward,
|
|
for i := 0; i < l.Store; i++ {
|
|
idx := l.oldest - i - 1
|
|
if idx < 0 {
|
|
idx += l.Store
|
|
}
|
|
l.a[idx] = l.rho[idx] * floats.Dot(l.s[idx], dir)
|
|
floats.AddScaled(dir, -l.a[idx], l.y[idx])
|
|
}
|
|
|
|
// Scale the initial Hessian.
|
|
gamma := sDotY / floats.Dot(y, y)
|
|
floats.Scale(gamma, dir)
|
|
|
|
// Start with the oldest element and go forward.
|
|
for i := 0; i < l.Store; i++ {
|
|
idx := i + l.oldest
|
|
if idx >= l.Store {
|
|
idx -= l.Store
|
|
}
|
|
beta := l.rho[idx] * floats.Dot(l.y[idx], dir)
|
|
floats.AddScaled(dir, l.a[idx]-beta, l.s[idx])
|
|
}
|
|
|
|
// dir contains H^{-1} * g, so flip the direction for minimization.
|
|
floats.Scale(-1, dir)
|
|
|
|
return 1
|
|
}
|
|
|
|
func (*LBFGS) Needs() struct {
|
|
Gradient bool
|
|
Hessian bool
|
|
} {
|
|
return struct {
|
|
Gradient bool
|
|
Hessian bool
|
|
}{true, false}
|
|
}
|