Files
gonum/graph/formats/rdf/rdf_line_example_test.go
Dan Kortschak d39af6a71b graph/formats/rdf: new package for RDF N-Quad parsing
This code is based on the RDF N-Quad parsing code that I wrote for the Cayley
graph database project in 2014. The code here does not include any code that
was written by other members of the Cayley project and so is unencumbered by
copyright ownership from that project.

License addition is for the test suite from [1] linked from [2]. A second more
restrictive license is possible if we are claiming spec compliance[3].

[1]https://www.w3.org/Consortium/Legal/2008/03-bsd-license
[2]https://www.w3.org/Consortium/Legal/2008/04-testsuite-copyright.html
[3]https://www.w3.org/Consortium/Legal/2008/04-testsuite-license.html
2021-01-13 20:31:06 +10:30

201 lines
5.3 KiB
Go

// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rdf_test
import (
"fmt"
"log"
"strings"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/encoding"
"gonum.org/v1/gonum/graph/encoding/dot"
"gonum.org/v1/gonum/graph/formats/rdf"
"gonum.org/v1/gonum/graph/multi"
)
// foodNode implements graph.Node, dot.Node and encoding.Attributer
// to allow the RDF term value to be given to the DOT encoder.
type foodNode struct {
rdf.Term
}
func (n foodNode) DOTID() string {
text, _, kind, err := n.Term.Parts()
if err != nil {
return fmt.Sprintf("error:%s", n.Term.Value)
}
switch kind {
case rdf.Blank:
return n.Term.Value
case rdf.IRI:
return text
case rdf.Literal:
return fmt.Sprintf("%q", text)
default:
return fmt.Sprintf("invalid:%s", n.Term.Value)
}
}
func (n foodNode) Attributes() []encoding.Attribute {
_, qual, _, err := n.Term.Parts()
if err != nil {
return []encoding.Attribute{{Key: "error", Value: err.Error()}}
}
if qual == "" {
return nil
}
parts := strings.Split(qual, ":")
return []encoding.Attribute{{Key: parts[0], Value: parts[1]}}
}
// foodLine implements graph.Line and encoding.Attributer to
// allow the line's RDF term value to be given to the DOT
// encoder and for the nodes to be shimmed to the foodNode
// type.
//
// It also implements line reversal for the semantics of
// a food web with some taxonomic information.
type foodLine struct {
*rdf.Statement
}
func (l foodLine) From() graph.Node { return foodNode{l.Subject} }
func (l foodLine) To() graph.Node { return foodNode{l.Object} }
func (l foodLine) ReversedLine() graph.Line {
if l.Predicate.Value == "<tax:is>" {
// This should remain unreversed, so return as is.
return l
}
s := *l.Statement
// Reverse the line end points.
s.Subject, s.Object = s.Object, s.Subject
// Invert the semantics of the predicate.
switch s.Predicate.Value {
case "<eco:eats>":
s.Predicate.Value = "<eco:eaten-by>"
case "<eco:eaten-by>":
s.Predicate.Value = "<eco:eats>"
case "<tax:is-a>":
s.Predicate.Value = "<tax:includes>"
case "<tax:includes>":
s.Predicate.Value = "<tax:is-a>"
default:
panic("invalid predicate")
}
// All IDs returned by the RDF parser are positive, so
// sign reverse the edge ID to avoid any collisions.
s.Predicate.UID *= -1
return foodLine{&s}
}
func (l foodLine) Attributes() []encoding.Attribute {
text, _, _, err := l.Predicate.Parts()
if err != nil {
return []encoding.Attribute{{Key: "error", Value: err.Error()}}
}
parts := strings.Split(text, ":")
return []encoding.Attribute{{Key: parts[0], Value: parts[1]}}
}
// expand copies src into dst, adding the reversal of each line if it is
// distinct.
func expand(dst, src *multi.DirectedGraph) {
it := src.Edges()
for it.Next() {
lit := it.Edge().(multi.Edge)
for lit.Next() {
l := lit.Line()
r := l.ReversedLine()
dst.SetLine(l)
if l == r {
continue
}
dst.SetLine(r)
}
}
}
func ExampleStatement_ReversedLine() {
const statements = `
_:wolf <tax:is-a> _:animal .
_:wolf <tax:is> "Wolf"^^<tax:common> .
_:wolf <tax:is> "Canis lupus"^^<tax:binomial> .
_:wolf <eco:eats> _:sheep .
_:sheep <tax:is-a> _:animal .
_:sheep <tax:is> "Sheep"^^<tax:common> .
_:sheep <tax:is> "Ovis aries"^^<tax:binomial> .
_:sheep <eco:eats> _:grass .
_:grass <tax:is-a> _:plant .
_:grass <tax:is> "Grass"^^<tax:common> .
_:grass <tax:is> "Lolium perenne"^^<tax:binomial> .
_:grass <tax:is> "Festuca rubra"^^<tax:binomial> .
_:grass <tax:is> "Poa pratensis"^^<tax:binomial> .
`
// Decode the statement stream and insert the lines into a multigraph.
g := multi.NewDirectedGraph()
dec := rdf.NewDecoder(strings.NewReader(statements))
for {
l, err := dec.Unmarshal()
if err != nil {
break
}
// Wrap the line with a shim type to allow the RDF values
// to be passed to the DOT marshaling routine.
g.SetLine(foodLine{l})
}
h := multi.NewDirectedGraph()
expand(h, g)
// Marshal the graph into DOT.
b, err := dot.MarshalMulti(h, "food web", "", "\t")
if err != nil {
log.Fatal(err)
}
fmt.Printf("%s\n\n", b)
// Output:
//
// digraph "food web" {
// // Node definitions.
// "_:wolf";
// "_:animal";
// "Wolf" [tax=common];
// "Canis lupus" [tax=binomial];
// "_:sheep";
// "Sheep" [tax=common];
// "Ovis aries" [tax=binomial];
// "_:grass";
// "_:plant";
// "Grass" [tax=common];
// "Lolium perenne" [tax=binomial];
// "Festuca rubra" [tax=binomial];
// "Poa pratensis" [tax=binomial];
//
// // Edge definitions.
// "_:wolf" -> "_:animal" [tax="is-a"];
// "_:wolf" -> "Wolf" [tax=is];
// "_:wolf" -> "Canis lupus" [tax=is];
// "_:wolf" -> "_:sheep" [eco=eats];
// "_:animal" -> "_:wolf" [tax=includes];
// "_:animal" -> "_:sheep" [tax=includes];
// "_:sheep" -> "_:wolf" [eco="eaten-by"];
// "_:sheep" -> "_:animal" [tax="is-a"];
// "_:sheep" -> "Sheep" [tax=is];
// "_:sheep" -> "Ovis aries" [tax=is];
// "_:sheep" -> "_:grass" [eco=eats];
// "_:grass" -> "_:sheep" [eco="eaten-by"];
// "_:grass" -> "_:plant" [tax="is-a"];
// "_:grass" -> "Grass" [tax=is];
// "_:grass" -> "Lolium perenne" [tax=is];
// "_:grass" -> "Festuca rubra" [tax=is];
// "_:grass" -> "Poa pratensis" [tax=is];
// "_:plant" -> "_:grass" [tax=includes];
// }
}