Files
gonum/optimize/functions/minsurf.go
Dan Kortschak 5f0141ca4c all: run gofmt and generate all packages
Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
2022-08-06 07:05:17 +09:30

261 lines
6.8 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package functions
import (
"fmt"
"math"
)
// MinimalSurface implements a finite element approximation to a minimal
// surface problem: determine the surface with minimal area and given boundary
// values in a unit square centered at the origin.
//
// References:
//
// Averick, M.B., Carter, R.G., Moré, J.J., Xue, G.-L.: The Minpack-2 Test
// Problem Collection. Preprint MCS-P153-0692, Argonne National Laboratory (1992)
type MinimalSurface struct {
bottom, top []float64
left, right []float64
origin, step [2]float64
}
// NewMinimalSurface creates a new discrete minimal surface problem and
// precomputes its boundary values. The problem is discretized on a rectilinear
// grid with nx×ny nodes which means that the problem dimension is (nx-2)(ny-2).
func NewMinimalSurface(nx, ny int) *MinimalSurface {
ms := &MinimalSurface{
bottom: make([]float64, nx),
top: make([]float64, nx),
left: make([]float64, ny),
right: make([]float64, ny),
origin: [2]float64{-0.5, -0.5},
step: [2]float64{1 / float64(nx-1), 1 / float64(ny-1)},
}
ms.initBoundary(ms.bottom, ms.origin[0], ms.origin[1], ms.step[0], 0)
startY := ms.origin[1] + float64(ny-1)*ms.step[1]
ms.initBoundary(ms.top, ms.origin[0], startY, ms.step[0], 0)
ms.initBoundary(ms.left, ms.origin[0], ms.origin[1], 0, ms.step[1])
startX := ms.origin[0] + float64(nx-1)*ms.step[0]
ms.initBoundary(ms.right, startX, ms.origin[1], 0, ms.step[1])
return ms
}
// Func returns the area of the surface represented by the vector x.
func (ms *MinimalSurface) Func(x []float64) (area float64) {
nx, ny := ms.Dims()
if len(x) != (nx-2)*(ny-2) {
panic("functions: problem size mismatch")
}
hx, hy := ms.Steps()
for j := 0; j < ny-1; j++ {
for i := 0; i < nx-1; i++ {
vLL := ms.at(i, j, x)
vLR := ms.at(i+1, j, x)
vUL := ms.at(i, j+1, x)
vUR := ms.at(i+1, j+1, x)
dvLdx := (vLR - vLL) / hx
dvLdy := (vUL - vLL) / hy
dvUdx := (vUR - vUL) / hx
dvUdy := (vUR - vLR) / hy
fL := math.Sqrt(1 + dvLdx*dvLdx + dvLdy*dvLdy)
fU := math.Sqrt(1 + dvUdx*dvUdx + dvUdy*dvUdy)
area += fL + fU
}
}
area *= 0.5 * hx * hy
return area
}
// Grad evaluates the area gradient of the surface represented by the vector.
func (ms *MinimalSurface) Grad(grad, x []float64) []float64 {
nx, ny := ms.Dims()
if len(x) != (nx-2)*(ny-2) {
panic("functions: problem size mismatch")
}
if grad == nil {
grad = make([]float64, len(x))
}
if len(x) != len(grad) {
panic("functions: unexpected size mismatch")
}
for i := range grad {
grad[i] = 0
}
hx, hy := ms.Steps()
for j := 0; j < ny-1; j++ {
for i := 0; i < nx-1; i++ {
vLL := ms.at(i, j, x)
vLR := ms.at(i+1, j, x)
vUL := ms.at(i, j+1, x)
vUR := ms.at(i+1, j+1, x)
dvLdx := (vLR - vLL) / hx
dvLdy := (vUL - vLL) / hy
dvUdx := (vUR - vUL) / hx
dvUdy := (vUR - vLR) / hy
fL := math.Sqrt(1 + dvLdx*dvLdx + dvLdy*dvLdy)
fU := math.Sqrt(1 + dvUdx*dvUdx + dvUdy*dvUdy)
if grad != nil {
if i > 0 {
if j > 0 {
grad[ms.index(i, j)] -= (dvLdx/hx + dvLdy/hy) / fL
}
if j < ny-2 {
grad[ms.index(i, j+1)] += (dvLdy/hy)/fL - (dvUdx/hx)/fU
}
}
if i < nx-2 {
if j > 0 {
grad[ms.index(i+1, j)] += (dvLdx/hx)/fL - (dvUdy/hy)/fU
}
if j < ny-2 {
grad[ms.index(i+1, j+1)] += (dvUdx/hx + dvUdy/hy) / fU
}
}
}
}
}
cellSize := 0.5 * hx * hy
for i := range grad {
grad[i] *= cellSize
}
return grad
}
// InitX returns a starting location for the minimization problem. Length of
// the returned slice is (nx-2)(ny-2).
func (ms *MinimalSurface) InitX() []float64 {
nx, ny := ms.Dims()
x := make([]float64, (nx-2)*(ny-2))
for j := 1; j < ny-1; j++ {
for i := 1; i < nx-1; i++ {
x[ms.index(i, j)] = (ms.left[j] + ms.bottom[i]) / 2
}
}
return x
}
// ExactX returns the exact solution to the _continuous_ minimization problem
// projected on the interior nodes of the grid. Length of the returned slice is
// (nx-2)(ny-2).
func (ms *MinimalSurface) ExactX() []float64 {
nx, ny := ms.Dims()
v := make([]float64, (nx-2)*(ny-2))
for j := 1; j < ny-1; j++ {
for i := 1; i < nx-1; i++ {
v[ms.index(i, j)] = ms.ExactSolution(ms.x(i), ms.y(j))
}
}
return v
}
// ExactSolution returns the value of the exact solution to the minimal surface
// problem at (x,y). The exact solution is
//
// F_exact(x,y) = U^2(x,y) - V^2(x,y),
//
// where U and V are the unique solutions to the equations
//
// x = u + uv^2 - u^3/3,
// y = -v - u^2v + v^3/3.
func (ms *MinimalSurface) ExactSolution(x, y float64) float64 {
var u = [2]float64{x, -y}
var f [2]float64
var jac [2][2]float64
for k := 0; k < 100; k++ {
f[0] = u[0] + u[0]*u[1]*u[1] - u[0]*u[0]*u[0]/3 - x
f[1] = -u[1] - u[0]*u[0]*u[1] + u[1]*u[1]*u[1]/3 - y
fNorm := math.Hypot(f[0], f[1])
if fNorm < 1e-13 {
break
}
jac[0][0] = 1 + u[1]*u[1] - u[0]*u[0]
jac[0][1] = 2 * u[0] * u[1]
jac[1][0] = -2 * u[0] * u[1]
jac[1][1] = -1 - u[0]*u[0] + u[1]*u[1]
det := jac[0][0]*jac[1][1] - jac[0][1]*jac[1][0]
u[0] -= (jac[1][1]*f[0] - jac[0][1]*f[1]) / det
u[1] -= (jac[0][0]*f[1] - jac[1][0]*f[0]) / det
}
return u[0]*u[0] - u[1]*u[1]
}
// Dims returns the size of the underlying rectilinear grid.
func (ms *MinimalSurface) Dims() (nx, ny int) {
return len(ms.bottom), len(ms.left)
}
// Steps returns the spatial step sizes of the underlying rectilinear grid.
func (ms *MinimalSurface) Steps() (hx, hy float64) {
return ms.step[0], ms.step[1]
}
func (ms *MinimalSurface) x(i int) float64 {
return ms.origin[0] + float64(i)*ms.step[0]
}
func (ms *MinimalSurface) y(j int) float64 {
return ms.origin[1] + float64(j)*ms.step[1]
}
func (ms *MinimalSurface) at(i, j int, x []float64) float64 {
nx, ny := ms.Dims()
if i < 0 || i >= nx {
panic(fmt.Sprintf("node [%v,%v] not on grid", i, j))
}
if j < 0 || j >= ny {
panic(fmt.Sprintf("node [%v,%v] not on grid", i, j))
}
if i == 0 {
return ms.left[j]
}
if j == 0 {
return ms.bottom[i]
}
if i == nx-1 {
return ms.right[j]
}
if j == ny-1 {
return ms.top[i]
}
return x[ms.index(i, j)]
}
// index maps an interior grid node (i, j) to a one-dimensional index and
// returns it.
func (ms *MinimalSurface) index(i, j int) int {
nx, ny := ms.Dims()
if i <= 0 || i >= nx-1 {
panic(fmt.Sprintf("[%v,%v] is not an interior node", i, j))
}
if j <= 0 || j >= ny-1 {
panic(fmt.Sprintf("[%v,%v] is not an interior node", i, j))
}
return i - 1 + (j-1)*(nx-2)
}
// initBoundary initializes with the exact solution the boundary b whose i-th
// element b[i] is located at [startX+i×hx, startY+i×hy].
func (ms *MinimalSurface) initBoundary(b []float64, startX, startY, hx, hy float64) {
for i := range b {
x := startX + float64(i)*hx
y := startY + float64(i)*hy
b[i] = ms.ExactSolution(x, y)
}
}