mirror of
https://github.com/gonum/gonum.git
synced 2025-10-19 21:44:41 +08:00

This avoids the confusion between Zero() and IsZero() which sounds like they should be related to one another but are not. This makes IsEmpty the counterpart to Reset. Add check for Zero in allMatrix Fixes #1083. Updates #1081.
194 lines
4.6 KiB
Go
194 lines
4.6 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package mat
|
||
|
||
import "fmt"
|
||
|
||
// Product calculates the product of the given factors and places the result in
|
||
// the receiver. The order of multiplication operations is optimized to minimize
|
||
// the number of floating point operations on the basis that all matrix
|
||
// multiplications are general.
|
||
func (m *Dense) Product(factors ...Matrix) {
|
||
// The operation order optimisation is the naive O(n^3) dynamic
|
||
// programming approach and does not take into consideration
|
||
// finer-grained optimisations that might be available.
|
||
//
|
||
// TODO(kortschak) Consider using the O(nlogn) or O(mlogn)
|
||
// algorithms that are available. e.g.
|
||
//
|
||
// e.g. http://www.jofcis.com/publishedpapers/2014_10_10_4299_4306.pdf
|
||
//
|
||
// In the case that this is replaced, retain this code in
|
||
// tests to compare against.
|
||
|
||
r, c := m.Dims()
|
||
switch len(factors) {
|
||
case 0:
|
||
if r != 0 || c != 0 {
|
||
panic(ErrShape)
|
||
}
|
||
return
|
||
case 1:
|
||
m.reuseAsNonZeroed(factors[0].Dims())
|
||
m.Copy(factors[0])
|
||
return
|
||
case 2:
|
||
// Don't do work that we know the answer to.
|
||
m.Mul(factors[0], factors[1])
|
||
return
|
||
}
|
||
|
||
p := newMultiplier(m, factors)
|
||
p.optimize()
|
||
result := p.multiply()
|
||
m.reuseAsNonZeroed(result.Dims())
|
||
m.Copy(result)
|
||
putWorkspace(result)
|
||
}
|
||
|
||
// debugProductWalk enables debugging output for Product.
|
||
const debugProductWalk = false
|
||
|
||
// multiplier performs operation order optimisation and tree traversal.
|
||
type multiplier struct {
|
||
// factors is the ordered set of
|
||
// factors to multiply.
|
||
factors []Matrix
|
||
// dims is the chain of factor
|
||
// dimensions.
|
||
dims []int
|
||
|
||
// table contains the dynamic
|
||
// programming costs and subchain
|
||
// division indices.
|
||
table table
|
||
}
|
||
|
||
func newMultiplier(m *Dense, factors []Matrix) *multiplier {
|
||
// Check size early, but don't yet
|
||
// allocate data for m.
|
||
r, c := m.Dims()
|
||
fr, fc := factors[0].Dims() // newMultiplier is only called with len(factors) > 2.
|
||
if !m.IsEmpty() {
|
||
if fr != r {
|
||
panic(ErrShape)
|
||
}
|
||
if _, lc := factors[len(factors)-1].Dims(); lc != c {
|
||
panic(ErrShape)
|
||
}
|
||
}
|
||
|
||
dims := make([]int, len(factors)+1)
|
||
dims[0] = r
|
||
dims[len(dims)-1] = c
|
||
pc := fc
|
||
for i, f := range factors[1:] {
|
||
cr, cc := f.Dims()
|
||
dims[i+1] = cr
|
||
if pc != cr {
|
||
panic(ErrShape)
|
||
}
|
||
pc = cc
|
||
}
|
||
|
||
return &multiplier{
|
||
factors: factors,
|
||
dims: dims,
|
||
table: newTable(len(factors)),
|
||
}
|
||
}
|
||
|
||
// optimize determines an optimal matrix multiply operation order.
|
||
func (p *multiplier) optimize() {
|
||
if debugProductWalk {
|
||
fmt.Printf("chain dims: %v\n", p.dims)
|
||
}
|
||
const maxInt = int(^uint(0) >> 1)
|
||
for f := 1; f < len(p.factors); f++ {
|
||
for i := 0; i < len(p.factors)-f; i++ {
|
||
j := i + f
|
||
p.table.set(i, j, entry{cost: maxInt})
|
||
for k := i; k < j; k++ {
|
||
cost := p.table.at(i, k).cost + p.table.at(k+1, j).cost + p.dims[i]*p.dims[k+1]*p.dims[j+1]
|
||
if cost < p.table.at(i, j).cost {
|
||
p.table.set(i, j, entry{cost: cost, k: k})
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// multiply walks the optimal operation tree found by optimize,
|
||
// leaving the final result in the stack. It returns the
|
||
// product, which may be copied but should be returned to
|
||
// the workspace pool.
|
||
func (p *multiplier) multiply() *Dense {
|
||
result, _ := p.multiplySubchain(0, len(p.factors)-1)
|
||
if debugProductWalk {
|
||
r, c := result.Dims()
|
||
fmt.Printf("\tpop result (%d×%d) cost=%d\n", r, c, p.table.at(0, len(p.factors)-1).cost)
|
||
}
|
||
return result.(*Dense)
|
||
}
|
||
|
||
func (p *multiplier) multiplySubchain(i, j int) (m Matrix, intermediate bool) {
|
||
if i == j {
|
||
return p.factors[i], false
|
||
}
|
||
|
||
a, aTmp := p.multiplySubchain(i, p.table.at(i, j).k)
|
||
b, bTmp := p.multiplySubchain(p.table.at(i, j).k+1, j)
|
||
|
||
ar, ac := a.Dims()
|
||
br, bc := b.Dims()
|
||
if ac != br {
|
||
// Panic with a string since this
|
||
// is not a user-facing panic.
|
||
panic(ErrShape.Error())
|
||
}
|
||
|
||
if debugProductWalk {
|
||
fmt.Printf("\tpush f[%d] (%d×%d)%s * f[%d] (%d×%d)%s\n",
|
||
i, ar, ac, result(aTmp), j, br, bc, result(bTmp))
|
||
}
|
||
|
||
r := getWorkspace(ar, bc, false)
|
||
r.Mul(a, b)
|
||
if aTmp {
|
||
putWorkspace(a.(*Dense))
|
||
}
|
||
if bTmp {
|
||
putWorkspace(b.(*Dense))
|
||
}
|
||
return r, true
|
||
}
|
||
|
||
type entry struct {
|
||
k int // is the chain subdivision index.
|
||
cost int // cost is the cost of the operation.
|
||
}
|
||
|
||
// table is a row major n×n dynamic programming table.
|
||
type table struct {
|
||
n int
|
||
entries []entry
|
||
}
|
||
|
||
func newTable(n int) table {
|
||
return table{n: n, entries: make([]entry, n*n)}
|
||
}
|
||
|
||
func (t table) at(i, j int) entry { return t.entries[i*t.n+j] }
|
||
func (t table) set(i, j int, e entry) { t.entries[i*t.n+j] = e }
|
||
|
||
type result bool
|
||
|
||
func (r result) String() string {
|
||
if r {
|
||
return " (popped result)"
|
||
}
|
||
return ""
|
||
}
|