Files
gonum/mat/matrix.go
Brendan Tracey 975d99cd20 mat,all: Rename IsZero to IsEmpty (#1088)
This avoids the confusion between Zero() and IsZero() which sounds like they should be related
to one another but are not. This makes IsEmpty the counterpart to Reset. Add check for Zero in allMatrix

Fixes #1083.
Updates #1081.
2019-09-15 13:53:29 +01:00

1004 lines
26 KiB
Go

// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
// Matrix is the basic matrix interface type.
type Matrix interface {
// Dims returns the dimensions of a Matrix.
Dims() (r, c int)
// At returns the value of a matrix element at row i, column j.
// It will panic if i or j are out of bounds for the matrix.
At(i, j int) float64
// T returns the transpose of the Matrix. Whether T returns a copy of the
// underlying data is implementation dependent.
// This method may be implemented using the Transpose type, which
// provides an implicit matrix transpose.
T() Matrix
}
// allMatrix represents the extra set of methods that all mat Matrix types
// should satisfy. This is used to enforce compile-time consistency between the
// Dense types, especially helpful when adding new features.
type allMatrix interface {
Reseter
IsEmpty() bool
Zero()
}
// denseMatrix represents the extra set of methods that all Dense Matrix types
// should satisfy. This is used to enforce compile-time consistency between the
// Dense types, especially helpful when adding new features.
type denseMatrix interface {
DiagView() Diagonal
Tracer
}
var (
_ Matrix = Transpose{}
_ Untransposer = Transpose{}
)
// Transpose is a type for performing an implicit matrix transpose. It implements
// the Matrix interface, returning values from the transpose of the matrix within.
type Transpose struct {
Matrix Matrix
}
// At returns the value of the element at row i and column j of the transposed
// matrix, that is, row j and column i of the Matrix field.
func (t Transpose) At(i, j int) float64 {
return t.Matrix.At(j, i)
}
// Dims returns the dimensions of the transposed matrix. The number of rows returned
// is the number of columns in the Matrix field, and the number of columns is
// the number of rows in the Matrix field.
func (t Transpose) Dims() (r, c int) {
c, r = t.Matrix.Dims()
return r, c
}
// T performs an implicit transpose by returning the Matrix field.
func (t Transpose) T() Matrix {
return t.Matrix
}
// Untranspose returns the Matrix field.
func (t Transpose) Untranspose() Matrix {
return t.Matrix
}
// Untransposer is a type that can undo an implicit transpose.
type Untransposer interface {
// Note: This interface is needed to unify all of the Transpose types. In
// the mat methods, we need to test if the Matrix has been implicitly
// transposed. If this is checked by testing for the specific Transpose type
// then the behavior will be different if the user uses T() or TTri() for a
// triangular matrix.
// Untranspose returns the underlying Matrix stored for the implicit transpose.
Untranspose() Matrix
}
// UntransposeBander is a type that can undo an implicit band transpose.
type UntransposeBander interface {
// Untranspose returns the underlying Banded stored for the implicit transpose.
UntransposeBand() Banded
}
// UntransposeTrier is a type that can undo an implicit triangular transpose.
type UntransposeTrier interface {
// Untranspose returns the underlying Triangular stored for the implicit transpose.
UntransposeTri() Triangular
}
// UntransposeTriBander is a type that can undo an implicit triangular banded
// transpose.
type UntransposeTriBander interface {
// Untranspose returns the underlying Triangular stored for the implicit transpose.
UntransposeTriBand() TriBanded
}
// Mutable is a matrix interface type that allows elements to be altered.
type Mutable interface {
// Set alters the matrix element at row i, column j to v.
// It will panic if i or j are out of bounds for the matrix.
Set(i, j int, v float64)
Matrix
}
// A RowViewer can return a Vector reflecting a row that is backed by the matrix
// data. The Vector returned will have length equal to the number of columns.
type RowViewer interface {
RowView(i int) Vector
}
// A RawRowViewer can return a slice of float64 reflecting a row that is backed by the matrix
// data.
type RawRowViewer interface {
RawRowView(i int) []float64
}
// A ColViewer can return a Vector reflecting a column that is backed by the matrix
// data. The Vector returned will have length equal to the number of rows.
type ColViewer interface {
ColView(j int) Vector
}
// A RawColViewer can return a slice of float64 reflecting a column that is backed by the matrix
// data.
type RawColViewer interface {
RawColView(j int) []float64
}
// A ClonerFrom can make a copy of a into the receiver, overwriting the previous value of the
// receiver. The clone operation does not make any restriction on shape and will not cause
// shadowing.
type ClonerFrom interface {
CloneFrom(a Matrix)
}
// A Reseter can reset the matrix so that it can be reused as the receiver of a dimensionally
// restricted operation. This is commonly used when the matrix is being used as a workspace
// or temporary matrix.
//
// If the matrix is a view, using Reset may result in data corruption in elements outside
// the view. Similarly, if the matrix shares backing data with another variable, using
// Reset may lead to unexpected changes in data values.
type Reseter interface {
Reset()
}
// A Copier can make a copy of elements of a into the receiver. The submatrix copied
// starts at row and column 0 and has dimensions equal to the minimum dimensions of
// the two matrices. The number of row and columns copied is returned.
// Copy will copy from a source that aliases the receiver unless the source is transposed;
// an aliasing transpose copy will panic with the exception for a special case when
// the source data has a unitary increment or stride.
type Copier interface {
Copy(a Matrix) (r, c int)
}
// A Grower can grow the size of the represented matrix by the given number of rows and columns.
// Growing beyond the size given by the Caps method will result in the allocation of a new
// matrix and copying of the elements. If Grow is called with negative increments it will
// panic with ErrIndexOutOfRange.
type Grower interface {
Caps() (r, c int)
Grow(r, c int) Matrix
}
// A BandWidther represents a banded matrix and can return the left and right half-bandwidths, k1 and
// k2.
type BandWidther interface {
BandWidth() (k1, k2 int)
}
// A RawMatrixSetter can set the underlying blas64.General used by the receiver. There is no restriction
// on the shape of the receiver. Changes to the receiver's elements will be reflected in the blas64.General.Data.
type RawMatrixSetter interface {
SetRawMatrix(a blas64.General)
}
// A RawMatrixer can return a blas64.General representation of the receiver. Changes to the blas64.General.Data
// slice will be reflected in the original matrix, changes to the Rows, Cols and Stride fields will not.
type RawMatrixer interface {
RawMatrix() blas64.General
}
// A RawVectorer can return a blas64.Vector representation of the receiver. Changes to the blas64.Vector.Data
// slice will be reflected in the original matrix, changes to the Inc field will not.
type RawVectorer interface {
RawVector() blas64.Vector
}
// A NonZeroDoer can call a function for each non-zero element of the receiver.
// The parameters of the function are the element indices and its value.
type NonZeroDoer interface {
DoNonZero(func(i, j int, v float64))
}
// A RowNonZeroDoer can call a function for each non-zero element of a row of the receiver.
// The parameters of the function are the element indices and its value.
type RowNonZeroDoer interface {
DoRowNonZero(i int, fn func(i, j int, v float64))
}
// A ColNonZeroDoer can call a function for each non-zero element of a column of the receiver.
// The parameters of the function are the element indices and its value.
type ColNonZeroDoer interface {
DoColNonZero(j int, fn func(i, j int, v float64))
}
// untranspose untransposes a matrix if applicable. If a is an Untransposer, then
// untranspose returns the underlying matrix and true. If it is not, then it returns
// the input matrix and false.
func untranspose(a Matrix) (Matrix, bool) {
if ut, ok := a.(Untransposer); ok {
return ut.Untranspose(), true
}
return a, false
}
// untransposeExtract returns an untransposed matrix in a built-in matrix type.
//
// The untransposed matrix is returned unaltered if it is a built-in matrix type.
// Otherwise, if it implements a Raw method, an appropriate built-in type value
// is returned holding the raw matrix value of the input. If neither of these
// is possible, the untransposed matrix is returned.
func untransposeExtract(a Matrix) (Matrix, bool) {
ut, trans := untranspose(a)
switch m := ut.(type) {
case *DiagDense, *SymBandDense, *TriBandDense, *BandDense, *TriDense, *SymDense, *Dense:
return m, trans
// TODO(btracey): Add here if we ever have an equivalent of RawDiagDense.
case RawSymBander:
rsb := m.RawSymBand()
if rsb.Uplo != blas.Upper {
return ut, trans
}
var sb SymBandDense
sb.SetRawSymBand(rsb)
return &sb, trans
case RawTriBander:
rtb := m.RawTriBand()
if rtb.Diag == blas.Unit {
return ut, trans
}
var tb TriBandDense
tb.SetRawTriBand(rtb)
return &tb, trans
case RawBander:
var b BandDense
b.SetRawBand(m.RawBand())
return &b, trans
case RawTriangular:
rt := m.RawTriangular()
if rt.Diag == blas.Unit {
return ut, trans
}
var t TriDense
t.SetRawTriangular(rt)
return &t, trans
case RawSymmetricer:
rs := m.RawSymmetric()
if rs.Uplo != blas.Upper {
return ut, trans
}
var s SymDense
s.SetRawSymmetric(rs)
return &s, trans
case RawMatrixer:
var d Dense
d.SetRawMatrix(m.RawMatrix())
return &d, trans
default:
return ut, trans
}
}
// TODO(btracey): Consider adding CopyCol/CopyRow if the behavior seems useful.
// TODO(btracey): Add in fast paths to Row/Col for the other concrete types
// (TriDense, etc.) as well as relevant interfaces (RowColer, RawRowViewer, etc.)
// Col copies the elements in the jth column of the matrix into the slice dst.
// The length of the provided slice must equal the number of rows, unless the
// slice is nil in which case a new slice is first allocated.
func Col(dst []float64, j int, a Matrix) []float64 {
r, c := a.Dims()
if j < 0 || j >= c {
panic(ErrColAccess)
}
if dst == nil {
dst = make([]float64, r)
} else {
if len(dst) != r {
panic(ErrColLength)
}
}
aU, aTrans := untranspose(a)
if rm, ok := aU.(RawMatrixer); ok {
m := rm.RawMatrix()
if aTrans {
copy(dst, m.Data[j*m.Stride:j*m.Stride+m.Cols])
return dst
}
blas64.Copy(blas64.Vector{N: r, Inc: m.Stride, Data: m.Data[j:]},
blas64.Vector{N: r, Inc: 1, Data: dst},
)
return dst
}
for i := 0; i < r; i++ {
dst[i] = a.At(i, j)
}
return dst
}
// Row copies the elements in the ith row of the matrix into the slice dst.
// The length of the provided slice must equal the number of columns, unless the
// slice is nil in which case a new slice is first allocated.
func Row(dst []float64, i int, a Matrix) []float64 {
r, c := a.Dims()
if i < 0 || i >= r {
panic(ErrColAccess)
}
if dst == nil {
dst = make([]float64, c)
} else {
if len(dst) != c {
panic(ErrRowLength)
}
}
aU, aTrans := untranspose(a)
if rm, ok := aU.(RawMatrixer); ok {
m := rm.RawMatrix()
if aTrans {
blas64.Copy(blas64.Vector{N: c, Inc: m.Stride, Data: m.Data[i:]},
blas64.Vector{N: c, Inc: 1, Data: dst},
)
return dst
}
copy(dst, m.Data[i*m.Stride:i*m.Stride+m.Cols])
return dst
}
for j := 0; j < c; j++ {
dst[j] = a.At(i, j)
}
return dst
}
// Cond returns the condition number of the given matrix under the given norm.
// The condition number must be based on the 1-norm, 2-norm or ∞-norm.
// Cond will panic with matrix.ErrShape if the matrix has zero size.
//
// BUG(btracey): The computation of the 1-norm and ∞-norm for non-square matrices
// is innacurate, although is typically the right order of magnitude. See
// https://github.com/xianyi/OpenBLAS/issues/636. While the value returned will
// change with the resolution of this bug, the result from Cond will match the
// condition number used internally.
func Cond(a Matrix, norm float64) float64 {
m, n := a.Dims()
if m == 0 || n == 0 {
panic(ErrShape)
}
var lnorm lapack.MatrixNorm
switch norm {
default:
panic("mat: bad norm value")
case 1:
lnorm = lapack.MaxColumnSum
case 2:
var svd SVD
ok := svd.Factorize(a, SVDNone)
if !ok {
return math.Inf(1)
}
return svd.Cond()
case math.Inf(1):
lnorm = lapack.MaxRowSum
}
if m == n {
// Use the LU decomposition to compute the condition number.
var lu LU
lu.factorize(a, lnorm)
return lu.Cond()
}
if m > n {
// Use the QR factorization to compute the condition number.
var qr QR
qr.factorize(a, lnorm)
return qr.Cond()
}
// Use the LQ factorization to compute the condition number.
var lq LQ
lq.factorize(a, lnorm)
return lq.Cond()
}
// Det returns the determinant of the matrix a. In many expressions using LogDet
// will be more numerically stable.
func Det(a Matrix) float64 {
det, sign := LogDet(a)
return math.Exp(det) * sign
}
// Dot returns the sum of the element-wise product of a and b.
// Dot panics if the matrix sizes are unequal.
func Dot(a, b Vector) float64 {
la := a.Len()
lb := b.Len()
if la != lb {
panic(ErrShape)
}
if arv, ok := a.(RawVectorer); ok {
if brv, ok := b.(RawVectorer); ok {
return blas64.Dot(arv.RawVector(), brv.RawVector())
}
}
var sum float64
for i := 0; i < la; i++ {
sum += a.At(i, 0) * b.At(i, 0)
}
return sum
}
// Equal returns whether the matrices a and b have the same size
// and are element-wise equal.
func Equal(a, b Matrix) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
if rma, ok := aU.(RawMatrixer); ok {
if rmb, ok := bU.(RawMatrixer); ok {
ra := rma.RawMatrix()
rb := rmb.RawMatrix()
if aTrans == bTrans {
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
return false
}
}
}
return true
}
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[j*rb.Stride+i] {
return false
}
}
}
return true
}
}
if rma, ok := aU.(RawSymmetricer); ok {
if rmb, ok := bU.(RawSymmetricer); ok {
ra := rma.RawSymmetric()
rb := rmb.RawSymmetric()
// Symmetric matrices are always upper and equal to their transpose.
for i := 0; i < ra.N; i++ {
for j := i; j < ra.N; j++ {
if ra.Data[i*ra.Stride+j] != rb.Data[i*rb.Stride+j] {
return false
}
}
}
return true
}
}
if ra, ok := aU.(*VecDense); ok {
if rb, ok := bU.(*VecDense); ok {
// If the raw vectors are the same length they must either both be
// transposed or both not transposed (or have length 1).
for i := 0; i < ra.mat.N; i++ {
if ra.mat.Data[i*ra.mat.Inc] != rb.mat.Data[i*rb.mat.Inc] {
return false
}
}
return true
}
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if a.At(i, j) != b.At(i, j) {
return false
}
}
}
return true
}
// EqualApprox returns whether the matrices a and b have the same size and contain all equal
// elements with tolerance for element-wise equality specified by epsilon. Matrices
// with non-equal shapes are not equal.
func EqualApprox(a, b Matrix, epsilon float64) bool {
ar, ac := a.Dims()
br, bc := b.Dims()
if ar != br || ac != bc {
return false
}
aU, aTrans := untranspose(a)
bU, bTrans := untranspose(b)
if rma, ok := aU.(RawMatrixer); ok {
if rmb, ok := bU.(RawMatrixer); ok {
ra := rma.RawMatrix()
rb := rmb.RawMatrix()
if aTrans == bTrans {
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
return false
}
}
}
return true
}
for i := 0; i < ra.Rows; i++ {
for j := 0; j < ra.Cols; j++ {
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[j*rb.Stride+i], epsilon, epsilon) {
return false
}
}
}
return true
}
}
if rma, ok := aU.(RawSymmetricer); ok {
if rmb, ok := bU.(RawSymmetricer); ok {
ra := rma.RawSymmetric()
rb := rmb.RawSymmetric()
// Symmetric matrices are always upper and equal to their transpose.
for i := 0; i < ra.N; i++ {
for j := i; j < ra.N; j++ {
if !floats.EqualWithinAbsOrRel(ra.Data[i*ra.Stride+j], rb.Data[i*rb.Stride+j], epsilon, epsilon) {
return false
}
}
}
return true
}
}
if ra, ok := aU.(*VecDense); ok {
if rb, ok := bU.(*VecDense); ok {
// If the raw vectors are the same length they must either both be
// transposed or both not transposed (or have length 1).
for i := 0; i < ra.mat.N; i++ {
if !floats.EqualWithinAbsOrRel(ra.mat.Data[i*ra.mat.Inc], rb.mat.Data[i*rb.mat.Inc], epsilon, epsilon) {
return false
}
}
return true
}
}
for i := 0; i < ar; i++ {
for j := 0; j < ac; j++ {
if !floats.EqualWithinAbsOrRel(a.At(i, j), b.At(i, j), epsilon, epsilon) {
return false
}
}
}
return true
}
// LogDet returns the log of the determinant and the sign of the determinant
// for the matrix that has been factorized. Numerical stability in product and
// division expressions is generally improved by working in log space.
func LogDet(a Matrix) (det float64, sign float64) {
// TODO(btracey): Add specialized routines for TriDense, etc.
var lu LU
lu.Factorize(a)
return lu.LogDet()
}
// Max returns the largest element value of the matrix A.
// Max will panic with matrix.ErrShape if the matrix has zero size.
func Max(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrShape)
}
// Max(A) = Max(Aᵀ)
aU, _ := untranspose(a)
switch m := aU.(type) {
case RawMatrixer:
rm := m.RawMatrix()
max := math.Inf(-1)
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
if v > max {
max = v
}
}
}
return max
case RawTriangular:
rm := m.RawTriangular()
// The max of a triangular is at least 0 unless the size is 1.
if rm.N == 1 {
return rm.Data[0]
}
max := 0.0
if rm.Uplo == blas.Upper {
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v > max {
max = v
}
}
}
return max
}
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
if v > max {
max = v
}
}
}
return max
case RawSymmetricer:
rm := m.RawSymmetric()
if rm.Uplo != blas.Upper {
panic(badSymTriangle)
}
max := math.Inf(-1)
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v > max {
max = v
}
}
}
return max
default:
r, c := aU.Dims()
max := math.Inf(-1)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := aU.At(i, j)
if v > max {
max = v
}
}
}
return max
}
}
// Min returns the smallest element value of the matrix A.
// Min will panic with matrix.ErrShape if the matrix has zero size.
func Min(a Matrix) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrShape)
}
// Min(A) = Min(Aᵀ)
aU, _ := untranspose(a)
switch m := aU.(type) {
case RawMatrixer:
rm := m.RawMatrix()
min := math.Inf(1)
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
if v < min {
min = v
}
}
}
return min
case RawTriangular:
rm := m.RawTriangular()
// The min of a triangular is at most 0 unless the size is 1.
if rm.N == 1 {
return rm.Data[0]
}
min := 0.0
if rm.Uplo == blas.Upper {
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v < min {
min = v
}
}
}
return min
}
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+i+1] {
if v < min {
min = v
}
}
}
return min
case RawSymmetricer:
rm := m.RawSymmetric()
if rm.Uplo != blas.Upper {
panic(badSymTriangle)
}
min := math.Inf(1)
for i := 0; i < rm.N; i++ {
for _, v := range rm.Data[i*rm.Stride+i : i*rm.Stride+rm.N] {
if v < min {
min = v
}
}
}
return min
default:
r, c := aU.Dims()
min := math.Inf(1)
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := aU.At(i, j)
if v < min {
min = v
}
}
}
return min
}
}
// Norm returns the specified (induced) norm of the matrix a. See
// https://en.wikipedia.org/wiki/Matrix_norm for the definition of an induced norm.
//
// Valid norms are:
// 1 - The maximum absolute column sum
// 2 - Frobenius norm, the square root of the sum of the squares of the elements.
// Inf - The maximum absolute row sum.
// Norm will panic with ErrNormOrder if an illegal norm order is specified and
// with matrix.ErrShape if the matrix has zero size.
func Norm(a Matrix, norm float64) float64 {
r, c := a.Dims()
if r == 0 || c == 0 {
panic(ErrShape)
}
aU, aTrans := untranspose(a)
var work []float64
switch rma := aU.(type) {
case RawMatrixer:
rm := rma.RawMatrix()
n := normLapack(norm, aTrans)
if n == lapack.MaxColumnSum {
work = getFloats(rm.Cols, false)
defer putFloats(work)
}
return lapack64.Lange(n, rm, work)
case RawTriangular:
rm := rma.RawTriangular()
n := normLapack(norm, aTrans)
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
work = getFloats(rm.N, false)
defer putFloats(work)
}
return lapack64.Lantr(n, rm, work)
case RawSymmetricer:
rm := rma.RawSymmetric()
n := normLapack(norm, aTrans)
if n == lapack.MaxRowSum || n == lapack.MaxColumnSum {
work = getFloats(rm.N, false)
defer putFloats(work)
}
return lapack64.Lansy(n, rm, work)
case *VecDense:
rv := rma.RawVector()
switch norm {
default:
panic(ErrNormOrder)
case 1:
if aTrans {
imax := blas64.Iamax(rv)
return math.Abs(rma.At(imax, 0))
}
return blas64.Asum(rv)
case 2:
return blas64.Nrm2(rv)
case math.Inf(1):
if aTrans {
return blas64.Asum(rv)
}
imax := blas64.Iamax(rv)
return math.Abs(rma.At(imax, 0))
}
}
switch norm {
default:
panic(ErrNormOrder)
case 1:
var max float64
for j := 0; j < c; j++ {
var sum float64
for i := 0; i < r; i++ {
sum += math.Abs(a.At(i, j))
}
if sum > max {
max = sum
}
}
return max
case 2:
var sum float64
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
v := a.At(i, j)
sum += v * v
}
}
return math.Sqrt(sum)
case math.Inf(1):
var max float64
for i := 0; i < r; i++ {
var sum float64
for j := 0; j < c; j++ {
sum += math.Abs(a.At(i, j))
}
if sum > max {
max = sum
}
}
return max
}
}
// normLapack converts the float64 norm input in Norm to a lapack.MatrixNorm.
func normLapack(norm float64, aTrans bool) lapack.MatrixNorm {
switch norm {
case 1:
n := lapack.MaxColumnSum
if aTrans {
n = lapack.MaxRowSum
}
return n
case 2:
return lapack.Frobenius
case math.Inf(1):
n := lapack.MaxRowSum
if aTrans {
n = lapack.MaxColumnSum
}
return n
default:
panic(ErrNormOrder)
}
}
// Sum returns the sum of the elements of the matrix.
func Sum(a Matrix) float64 {
var sum float64
aU, _ := untranspose(a)
switch rma := aU.(type) {
case RawSymmetricer:
rm := rma.RawSymmetric()
for i := 0; i < rm.N; i++ {
// Diagonals count once while off-diagonals count twice.
sum += rm.Data[i*rm.Stride+i]
var s float64
for _, v := range rm.Data[i*rm.Stride+i+1 : i*rm.Stride+rm.N] {
s += v
}
sum += 2 * s
}
return sum
case RawTriangular:
rm := rma.RawTriangular()
var startIdx, endIdx int
for i := 0; i < rm.N; i++ {
// Start and end index for this triangle-row.
switch rm.Uplo {
case blas.Upper:
startIdx = i
endIdx = rm.N
case blas.Lower:
startIdx = 0
endIdx = i + 1
default:
panic(badTriangle)
}
for _, v := range rm.Data[i*rm.Stride+startIdx : i*rm.Stride+endIdx] {
sum += v
}
}
return sum
case RawMatrixer:
rm := rma.RawMatrix()
for i := 0; i < rm.Rows; i++ {
for _, v := range rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols] {
sum += v
}
}
return sum
case *VecDense:
rm := rma.RawVector()
for i := 0; i < rm.N; i++ {
sum += rm.Data[i*rm.Inc]
}
return sum
default:
r, c := a.Dims()
for i := 0; i < r; i++ {
for j := 0; j < c; j++ {
sum += a.At(i, j)
}
}
return sum
}
}
// A Tracer can compute the trace of the matrix. Trace must panic if the
// matrix is not square.
type Tracer interface {
Trace() float64
}
// Trace returns the trace of the matrix. Trace will panic if the
// matrix is not square.
func Trace(a Matrix) float64 {
m, _ := untransposeExtract(a)
if t, ok := m.(Tracer); ok {
return t.Trace()
}
r, c := a.Dims()
if r != c {
panic(ErrSquare)
}
var v float64
for i := 0; i < r; i++ {
v += a.At(i, i)
}
return v
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
// use returns a float64 slice with l elements, using f if it
// has the necessary capacity, otherwise creating a new slice.
func use(f []float64, l int) []float64 {
if l <= cap(f) {
return f[:l]
}
return make([]float64, l)
}
// useZeroed returns a float64 slice with l elements, using f if it
// has the necessary capacity, otherwise creating a new slice. The
// elements of the returned slice are guaranteed to be zero.
func useZeroed(f []float64, l int) []float64 {
if l <= cap(f) {
f = f[:l]
zero(f)
return f
}
return make([]float64, l)
}
// zero zeros the given slice's elements.
func zero(f []float64) {
for i := range f {
f[i] = 0
}
}
// useInt returns an int slice with l elements, using i if it
// has the necessary capacity, otherwise creating a new slice.
func useInt(i []int, l int) []int {
if l <= cap(i) {
return i[:l]
}
return make([]int, l)
}