mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 18:42:45 +08:00 
			
		
		
		
	 5f0141ca4c
			
		
	
	5f0141ca4c
	
	
	
		
			
			Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package integrate
 | |
| 
 | |
| import "sort"
 | |
| 
 | |
| // Trapezoidal returns an approximate value of the integral
 | |
| //
 | |
| //	\int_a^b f(x) dx
 | |
| //
 | |
| // computed using the trapezoidal rule. The function f is given as a slice of
 | |
| // samples evaluated at locations in x, that is,
 | |
| //
 | |
| //	f[i] = f(x[i]), x[0] = a, x[len(x)-1] = b
 | |
| //
 | |
| // The slice x must be sorted in strictly increasing order. x and f must be of
 | |
| // equal length and the length must be at least 2.
 | |
| //
 | |
| // The trapezoidal rule approximates f by a piecewise linear function and
 | |
| // estimates
 | |
| //
 | |
| //	\int_x[i]^x[i+1] f(x) dx
 | |
| //
 | |
| // as
 | |
| //
 | |
| //	(x[i+1] - x[i]) * (f[i] + f[i+1])/2
 | |
| //
 | |
| // More details on the trapezoidal rule can be found at:
 | |
| // https://en.wikipedia.org/wiki/Trapezoidal_rule
 | |
| func Trapezoidal(x, f []float64) float64 {
 | |
| 	n := len(x)
 | |
| 	switch {
 | |
| 	case len(f) != n:
 | |
| 		panic("integrate: slice length mismatch")
 | |
| 	case n < 2:
 | |
| 		panic("integrate: input data too small")
 | |
| 	case !sort.Float64sAreSorted(x):
 | |
| 		panic("integrate: input must be sorted")
 | |
| 	}
 | |
| 
 | |
| 	integral := 0.0
 | |
| 	for i := 0; i < n-1; i++ {
 | |
| 		integral += 0.5 * (x[i+1] - x[i]) * (f[i+1] + f[i])
 | |
| 	}
 | |
| 
 | |
| 	return integral
 | |
| }
 |