Files
gonum/graph/community/louvain_directed_multiplex.go
2025-02-01 22:18:04 +10:30

916 lines
26 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package community
import (
"fmt"
"math"
"math/rand/v2"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/set"
"gonum.org/v1/gonum/graph/iterator"
"gonum.org/v1/gonum/internal/order"
)
// DirectedMultiplex is a directed multiplex graph.
type DirectedMultiplex interface {
Multiplex
// Layer returns the lth layer of the
// multiplex graph.
Layer(l int) graph.Directed
}
// qDirectedMultiplex returns the modularity Q score of the multiplex graph layers
// subdivided into the given communities at the given resolutions and weights. Q is
// returned as the vector of weighted Q scores for each layer of the multiplex graph.
// If communities is nil, the unclustered modularity score is returned.
// If weights is nil layers are equally weighted, otherwise the length of
// weights must equal the number of layers. If resolutions is nil, a resolution
// of 1.0 is used for all layers, otherwise either a single element slice may be used
// to specify a global resolution, or the length of resolutions must equal the number
// of layers. The resolution parameter is γ as defined in Reichardt and Bornholdt
// doi:10.1103/PhysRevE.74.016110.
// qUndirectedMultiplex will panic if the graph has any layer weight-scaled edge with
// negative edge weight.
//
// Q_{layer} = w_{layer} \sum_{ij} [ A_{layer}*_{ij} - (\gamma_{layer} k_i k_j)/2m ] \delta(c_i,c_j)
//
// Note that Q values for multiplex graphs are not scaled by the total layer edge weight.
func qDirectedMultiplex(g DirectedMultiplex, communities [][]graph.Node, weights, resolutions []float64) []float64 {
q := make([]float64, g.Depth())
nodes := graph.NodesOf(g.Nodes())
layerWeight := 1.0
layerResolution := 1.0
if len(resolutions) == 1 {
layerResolution = resolutions[0]
}
for l := 0; l < g.Depth(); l++ {
layer := g.Layer(l)
if weights != nil {
layerWeight = weights[l]
}
if layerWeight == 0 {
continue
}
if len(resolutions) > 1 {
layerResolution = resolutions[l]
}
var weight func(xid, yid int64) float64
if layerWeight < 0 {
weight = negativeWeightFuncFor(layer)
} else {
weight = positiveWeightFuncFor(layer)
}
// Calculate the total edge weight of the layer
// and the table of penetrating edge weight sums.
var m float64
k := make(map[int64]directedWeights, len(nodes))
for _, n := range nodes {
var wOut float64
u := n
uid := u.ID()
to := layer.From(uid)
for to.Next() {
wOut += weight(uid, to.Node().ID())
}
var wIn float64
v := n
vid := v.ID()
from := layer.To(vid)
for from.Next() {
wIn += weight(from.Node().ID(), vid)
}
id := n.ID()
w := weight(id, id)
m += w + wOut // We only need to count edges once.
k[n.ID()] = directedWeights{out: w + wOut, in: w + wIn}
}
if communities == nil {
var qLayer float64
for _, u := range nodes {
uid := u.ID()
kU := k[uid]
qLayer += weight(uid, uid) - layerResolution*kU.out*kU.in/m
}
q[l] = layerWeight * qLayer
continue
}
var qLayer float64
for _, c := range communities {
for _, u := range c {
uid := u.ID()
kU := k[uid]
for _, v := range c {
vid := v.ID()
kV := k[vid]
qLayer += weight(uid, vid) - layerResolution*kU.out*kV.in/m
}
}
}
q[l] = layerWeight * qLayer
}
return q
}
// DirectedLayers implements DirectedMultiplex.
type DirectedLayers []graph.Directed
// NewDirectedLayers returns a DirectedLayers using the provided layers
// ensuring there is a match between IDs for each layer.
func NewDirectedLayers(layers ...graph.Directed) (DirectedLayers, error) {
if len(layers) == 0 {
return nil, nil
}
base := make(set.Ints[int64])
nodes := layers[0].Nodes()
for nodes.Next() {
base.Add(nodes.Node().ID())
}
for i, l := range layers[1:] {
next := make(set.Ints[int64])
nodes := l.Nodes()
for nodes.Next() {
next.Add(nodes.Node().ID())
}
if !set.IntsEqual(base, next) {
return nil, fmt.Errorf("community: layer ID mismatch between layers: %d", i+1)
}
}
return layers, nil
}
// Nodes returns the nodes of the receiver.
func (g DirectedLayers) Nodes() graph.Nodes {
if len(g) == 0 {
return nil
}
return g[0].Nodes()
}
// Depth returns the depth of the multiplex graph.
func (g DirectedLayers) Depth() int { return len(g) }
// Layer returns the lth layer of the multiplex graph.
func (g DirectedLayers) Layer(l int) graph.Directed { return g[l] }
// louvainDirectedMultiplex returns the hierarchical modularization of g at the given resolution
// using the Louvain algorithm. If all is true and g has negatively weighted layers, all
// communities will be searched during the modularization. If src is nil, rand.IntN is
// used as the random generator. louvainDirectedMultiplex will panic if g has any edge with
// edge weight that does not sign-match the layer weight.
//
// graph.Undirect may be used as a shim to allow modularization of directed graphs.
func louvainDirectedMultiplex(g DirectedMultiplex, weights, resolutions []float64, all bool, src rand.Source) *ReducedDirectedMultiplex {
if weights != nil && len(weights) != g.Depth() {
panic("community: weights vector length mismatch")
}
if resolutions != nil && len(resolutions) != 1 && len(resolutions) != g.Depth() {
panic("community: resolutions vector length mismatch")
}
// See louvain.tex for a detailed description
// of the algorithm used here.
c := reduceDirectedMultiplex(g, nil, weights)
rnd := rand.IntN
if src != nil {
rnd = rand.New(src).IntN
}
for {
l := newDirectedMultiplexLocalMover(c, c.communities, weights, resolutions, all)
if l == nil {
return c
}
if done := l.localMovingHeuristic(rnd); done {
return c
}
c = reduceDirectedMultiplex(c, l.communities, weights)
}
}
// ReducedDirectedMultiplex is a directed graph of communities derived from a
// parent graph by reduction.
type ReducedDirectedMultiplex struct {
// nodes is the set of nodes held
// by the graph. In a ReducedDirectedMultiplex
// the node ID is the index into
// nodes.
nodes []multiplexCommunity
layers []directedEdges
// communities is the community
// structure of the graph.
communities [][]graph.Node
parent *ReducedDirectedMultiplex
}
var (
_ DirectedMultiplex = (*ReducedDirectedMultiplex)(nil)
_ graph.WeightedDirected = (*directedLayerHandle)(nil)
)
// Nodes returns all the nodes in the graph.
func (g *ReducedDirectedMultiplex) Nodes() graph.Nodes {
nodes := make([]graph.Node, len(g.nodes))
for i := range g.nodes {
nodes[i] = node(i)
}
return iterator.NewOrderedNodes(nodes)
}
// Depth returns the number of layers in the multiplex graph.
func (g *ReducedDirectedMultiplex) Depth() int { return len(g.layers) }
// Layer returns the lth layer of the multiplex graph.
func (g *ReducedDirectedMultiplex) Layer(l int) graph.Directed {
return directedLayerHandle{multiplex: g, layer: l}
}
// Communities returns the community memberships of the nodes in the
// graph used to generate the reduced graph.
func (g *ReducedDirectedMultiplex) Communities() [][]graph.Node {
communities := make([][]graph.Node, len(g.communities))
if g.parent == nil {
for i, members := range g.communities {
comm := make([]graph.Node, len(members))
for j, n := range members {
nodes := g.nodes[n.ID()].nodes
if len(nodes) != 1 {
panic("community: unexpected number of nodes in base graph community")
}
comm[j] = nodes[0]
}
communities[i] = comm
}
return communities
}
sub := g.parent.Communities()
for i, members := range g.communities {
var comm []graph.Node
for _, n := range members {
comm = append(comm, sub[n.ID()]...)
}
communities[i] = comm
}
return communities
}
// Structure returns the community structure of the current level of
// the module clustering. The first index of the returned value
// corresponds to the index of the nodes in the next higher level if
// it exists. The returned value should not be mutated.
func (g *ReducedDirectedMultiplex) Structure() [][]graph.Node {
return g.communities
}
// Expanded returns the next lower level of the module clustering or nil
// if at the lowest level.
func (g *ReducedDirectedMultiplex) Expanded() ReducedMultiplex {
return g.parent
}
// reduceDirectedMultiplex returns a reduced graph constructed from g divided
// into the given communities. The communities value is mutated
// by the call to reduceDirectedMultiplex. If communities is nil and g is a
// ReducedDirectedMultiplex, it is returned unaltered.
func reduceDirectedMultiplex(g DirectedMultiplex, communities [][]graph.Node, weights []float64) *ReducedDirectedMultiplex {
if communities == nil {
if r, ok := g.(*ReducedDirectedMultiplex); ok {
return r
}
nodes := graph.NodesOf(g.Nodes())
// TODO(kortschak) This sort is necessary really only
// for testing. In practice we would not be using the
// community provided by the user for a Q calculation.
// Probably we should use a function to map the
// communities in the test sets to the remapped order.
order.ByID(nodes)
communities = make([][]graph.Node, len(nodes))
for i := range nodes {
communities[i] = []graph.Node{node(i)}
}
r := ReducedDirectedMultiplex{
nodes: make([]multiplexCommunity, len(nodes)),
layers: make([]directedEdges, g.Depth()),
communities: communities,
}
communityOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
r.nodes[i] = multiplexCommunity{id: i, nodes: []graph.Node{n}, weights: make([]float64, depth(weights))}
communityOf[n.ID()] = i
}
for i := range r.layers {
r.layers[i] = directedEdges{
edgesFrom: make([][]int, len(nodes)),
edgesTo: make([][]int, len(nodes)),
weights: make(map[[2]int]float64),
}
}
w := 1.0
for l := 0; l < g.Depth(); l++ {
layer := g.Layer(l)
if weights != nil {
w = weights[l]
}
if w == 0 {
continue
}
var sign float64
var weight func(xid, yid int64) float64
if w < 0 {
sign, weight = -1, negativeWeightFuncFor(layer)
} else {
sign, weight = 1, positiveWeightFuncFor(layer)
}
for _, n := range nodes {
id := communityOf[n.ID()]
var out []int
u := n
uid := u.ID()
to := layer.From(uid)
for to.Next() {
vid := to.Node().ID()
vcid := communityOf[vid]
if vcid != id {
out = append(out, vcid)
}
r.layers[l].weights[[2]int{id, vcid}] = sign * weight(uid, vid)
}
r.layers[l].edgesFrom[id] = out
var in []int
v := n
vid := v.ID()
from := layer.To(vid)
for from.Next() {
uid := from.Node().ID()
ucid := communityOf[uid]
if ucid != id {
in = append(in, ucid)
}
r.layers[l].weights[[2]int{ucid, id}] = sign * weight(uid, vid)
}
r.layers[l].edgesTo[id] = in
}
}
return &r
}
// Remove zero length communities destructively.
var commNodes int
for i := 0; i < len(communities); {
comm := communities[i]
if len(comm) == 0 {
communities[i] = communities[len(communities)-1]
communities[len(communities)-1] = nil
communities = communities[:len(communities)-1]
} else {
commNodes += len(comm)
i++
}
}
r := ReducedDirectedMultiplex{
nodes: make([]multiplexCommunity, len(communities)),
layers: make([]directedEdges, g.Depth()),
}
communityOf := make(map[int64]int, commNodes)
for i, comm := range communities {
r.nodes[i] = multiplexCommunity{id: i, nodes: comm, weights: make([]float64, depth(weights))}
for _, n := range comm {
communityOf[n.ID()] = i
}
}
for i := range r.layers {
r.layers[i] = directedEdges{
edgesFrom: make([][]int, len(communities)),
edgesTo: make([][]int, len(communities)),
weights: make(map[[2]int]float64),
}
}
r.communities = make([][]graph.Node, len(communities))
for i := range r.communities {
r.communities[i] = []graph.Node{node(i)}
}
if g, ok := g.(*ReducedDirectedMultiplex); ok {
// Make sure we retain the truncated
// community structure.
g.communities = communities
r.parent = g
}
w := 1.0
for l := 0; l < g.Depth(); l++ {
layer := g.Layer(l)
if weights != nil {
w = weights[l]
}
if w == 0 {
continue
}
var sign float64
var weight func(xid, yid int64) float64
if w < 0 {
sign, weight = -1, negativeWeightFuncFor(layer)
} else {
sign, weight = 1, positiveWeightFuncFor(layer)
}
for id, comm := range communities {
var out, in []int
for _, n := range comm {
u := n
uid := u.ID()
for _, v := range comm {
r.nodes[id].weights[l] += sign * weight(uid, v.ID())
}
to := layer.From(uid)
for to.Next() {
vid := to.Node().ID()
vcid := communityOf[vid]
found := false
for _, e := range out {
if e == vcid {
found = true
break
}
}
if !found && vcid != id {
out = append(out, vcid)
}
// Add half weights because the other
// ends of edges are also counted.
r.layers[l].weights[[2]int{id, vcid}] += sign * weight(uid, vid) / 2
}
v := n
vid := v.ID()
from := layer.To(vid)
for from.Next() {
uid := from.Node().ID()
ucid := communityOf[uid]
found := false
for _, e := range in {
if e == ucid {
found = true
break
}
}
if !found && ucid != id {
in = append(in, ucid)
}
// Add half weights because the other
// ends of edges are also counted.
r.layers[l].weights[[2]int{ucid, id}] += sign * weight(uid, vid) / 2
}
}
r.layers[l].edgesFrom[id] = out
r.layers[l].edgesTo[id] = in
}
}
return &r
}
// directedLayerHandle is a handle to a multiplex graph layer.
type directedLayerHandle struct {
// multiplex is the complete
// multiplex graph.
multiplex *ReducedDirectedMultiplex
// layer is an index into the
// multiplex for the current
// layer.
layer int
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g directedLayerHandle) Node(id int64) graph.Node {
if g.has(id) {
return g.multiplex.nodes[id]
}
return nil
}
// has returns whether the node exists within the graph.
func (g directedLayerHandle) has(id int64) bool {
return 0 <= id && id < int64(len(g.multiplex.nodes))
}
// Nodes returns all the nodes in the graph.
func (g directedLayerHandle) Nodes() graph.Nodes {
nodes := make([]graph.Node, len(g.multiplex.nodes))
for i := range g.multiplex.nodes {
nodes[i] = node(i)
}
return iterator.NewOrderedNodes(nodes)
}
// From returns all nodes in g that can be reached directly from u.
func (g directedLayerHandle) From(uid int64) graph.Nodes {
out := g.multiplex.layers[g.layer].edgesFrom[uid]
nodes := make([]graph.Node, len(out))
for i, vid := range out {
nodes[i] = g.multiplex.nodes[vid]
}
return iterator.NewOrderedNodes(nodes)
}
// To returns all nodes in g that can reach directly to v.
func (g directedLayerHandle) To(vid int64) graph.Nodes {
in := g.multiplex.layers[g.layer].edgesTo[vid]
nodes := make([]graph.Node, len(in))
for i, uid := range in {
nodes[i] = g.multiplex.nodes[uid]
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g directedLayerHandle) HasEdgeBetween(xid, yid int64) bool {
if xid == yid {
return false
}
if xid == yid || !isValidID(xid) || !isValidID(yid) {
return false
}
_, ok := g.multiplex.layers[g.layer].weights[[2]int{int(xid), int(yid)}]
if ok {
return true
}
_, ok = g.multiplex.layers[g.layer].weights[[2]int{int(yid), int(xid)}]
return ok
}
// HasEdgeFromTo returns whether an edge exists from node u to v.
func (g directedLayerHandle) HasEdgeFromTo(uid, vid int64) bool {
if uid == vid || !isValidID(uid) || !isValidID(vid) {
return false
}
_, ok := g.multiplex.layers[g.layer].weights[[2]int{int(uid), int(vid)}]
return ok
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g directedLayerHandle) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdge(uid, vid)
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g directedLayerHandle) WeightedEdge(uid, vid int64) graph.WeightedEdge {
if uid == vid || !isValidID(uid) || !isValidID(vid) {
return nil
}
w, ok := g.multiplex.layers[g.layer].weights[[2]int{int(uid), int(vid)}]
if !ok {
return nil
}
return multiplexEdge{from: g.multiplex.nodes[uid], to: g.multiplex.nodes[vid], weight: w}
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node the internal node weight is returned. If there is no joining
// edge between the two nodes the weight value returned is zero. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g directedLayerHandle) Weight(xid, yid int64) (w float64, ok bool) {
if !isValidID(xid) || !isValidID(yid) {
return 0, false
}
if xid == yid {
return g.multiplex.nodes[xid].weights[g.layer], true
}
w, ok = g.multiplex.layers[g.layer].weights[[2]int{int(xid), int(yid)}]
return w, ok
}
// directedMultiplexLocalMover is a step in graph modularity optimization.
type directedMultiplexLocalMover struct {
g *ReducedDirectedMultiplex
// nodes is the set of working nodes.
nodes []graph.Node
// edgeWeightsOf is the weighted degree
// of each node indexed by ID.
edgeWeightsOf [][]directedWeights
// m is the total sum of
// edge weights in g.
m []float64
// weight is the weight function
// provided by g or a function
// that returns the Weight value
// of the non-nil edge between x
// and y.
weight []func(xid, yid int64) float64
// communities is the current
// division of g.
communities [][]graph.Node
// memberships is a mapping between
// node ID and community membership.
memberships []int
// resolution is the Reichardt and
// Bornholdt γ parameter as defined
// in doi:10.1103/PhysRevE.74.016110.
resolutions []float64
// weights is the layer weights for
// the modularisation.
weights []float64
// searchAll specifies whether the local
// mover should consider non-connected
// communities during the local moving
// heuristic.
searchAll bool
// moved indicates that a call to
// move has been made since the last
// call to shuffle.
moved bool
// changed indicates that a move
// has been made since the creation
// of the local mover.
changed bool
}
// newDirectedMultiplexLocalMover returns a new directedMultiplexLocalMover initialized with
// the graph g, a set of communities and a modularity resolution parameter. The
// node IDs of g must be contiguous in [0,n) where n is the number of nodes.
// If g has a zero edge weight sum, nil is returned.
func newDirectedMultiplexLocalMover(g *ReducedDirectedMultiplex, communities [][]graph.Node, weights, resolutions []float64, all bool) *directedMultiplexLocalMover {
nodes := graph.NodesOf(g.Nodes())
l := directedMultiplexLocalMover{
g: g,
nodes: nodes,
edgeWeightsOf: make([][]directedWeights, g.Depth()),
m: make([]float64, g.Depth()),
communities: communities,
memberships: make([]int, len(nodes)),
resolutions: resolutions,
weights: weights,
weight: make([]func(xid, yid int64) float64, g.Depth()),
}
// Calculate the total edge weight of the graph
// and degree weights for each node.
var zero int
for i := 0; i < g.Depth(); i++ {
l.edgeWeightsOf[i] = make([]directedWeights, len(nodes))
var weight func(xid, yid int64) float64
if weights != nil {
if weights[i] == 0 {
zero++
continue
}
if weights[i] < 0 {
weight = negativeWeightFuncFor(g.Layer(i))
l.searchAll = all
} else {
weight = positiveWeightFuncFor(g.Layer(i))
}
} else {
weight = positiveWeightFuncFor(g.Layer(i))
}
l.weight[i] = weight
layer := g.Layer(i)
for _, n := range l.nodes {
u := n
uid := u.ID()
var wOut float64
to := layer.From(uid)
for to.Next() {
wOut += weight(uid, to.Node().ID())
}
v := n
vid := v.ID()
var wIn float64
from := layer.To(vid)
for from.Next() {
wIn += weight(from.Node().ID(), vid)
}
id := n.ID()
w := weight(id, id)
l.edgeWeightsOf[i][uid] = directedWeights{out: w + wOut, in: w + wIn}
l.m[i] += w + wOut
}
if l.m[i] == 0 {
zero++
}
}
if zero == g.Depth() {
return nil
}
// Assign membership mappings.
for i, c := range communities {
for _, n := range c {
l.memberships[n.ID()] = i
}
}
return &l
}
// localMovingHeuristic performs the Louvain local moving heuristic until
// no further moves can be made. It returns a boolean indicating that the
// directedMultiplexLocalMover has not made any improvement to the community
// structure and so the Louvain algorithm is done.
func (l *directedMultiplexLocalMover) localMovingHeuristic(rnd func(int) int) (done bool) {
for {
l.shuffle(rnd)
for _, n := range l.nodes {
dQ, dst, src := l.deltaQ(n)
if dQ <= deltaQtol {
continue
}
l.move(dst, src)
}
if !l.moved {
return !l.changed
}
}
}
// shuffle performs a Fisher-Yates shuffle on the nodes held by the
// directedMultiplexLocalMover using the random source rnd which should return
// an integer in the range [0,n).
func (l *directedMultiplexLocalMover) shuffle(rnd func(n int) int) {
l.moved = false
for i := range l.nodes[:len(l.nodes)-1] {
j := i + rnd(len(l.nodes)-i)
l.nodes[i], l.nodes[j] = l.nodes[j], l.nodes[i]
}
}
// move moves the node at src to the community at dst.
func (l *directedMultiplexLocalMover) move(dst int, src commIdx) {
l.moved = true
l.changed = true
srcComm := l.communities[src.community]
n := srcComm[src.node]
l.memberships[n.ID()] = dst
l.communities[dst] = append(l.communities[dst], n)
srcComm[src.node], srcComm[len(srcComm)-1] = srcComm[len(srcComm)-1], nil
l.communities[src.community] = srcComm[:len(srcComm)-1]
}
// deltaQ returns the highest gain in modularity attainable by moving
// n from its current community to another connected community and
// the index of the chosen destination. The index into the
// directedMultiplexLocalMover's communities field is returned in src if n
// is in communities.
func (l *directedMultiplexLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, src commIdx) {
id := n.ID()
var iterator minTaker
if l.searchAll {
iterator = &dense{n: len(l.communities)}
} else {
// Find communities connected to n.
connected := make(set.Ints[int])
// The following for loop is equivalent to:
//
// for i := 0; i < l.g.Depth(); i++ {
// for _, v := range l.g.Layer(i).From(n) {
// connected.Add(l.memberships[v.ID()])
// }
// for _, v := range l.g.Layer(i).To(n) {
// connected.Add(l.memberships[v.ID()])
// }
// }
//
// This is done to avoid an allocation for
// each layer.
for _, layer := range l.g.layers {
for _, vid := range layer.edgesFrom[id] {
connected.Add(l.memberships[vid])
}
for _, vid := range layer.edgesTo[id] {
connected.Add(l.memberships[vid])
}
}
// Insert the node's own community.
connected.Add(l.memberships[id])
iterator = newSlice(connected)
}
// Calculate the highest modularity gain
// from moving into another community and
// keep the index of that community.
var dQremove float64
dQadd, dst, src := math.Inf(-1), -1, commIdx{-1, -1}
var i int
for iterator.TakeMin(&i) {
c := l.communities[i]
var removal bool
var _dQadd float64
for layer := 0; layer < l.g.Depth(); layer++ {
m := l.m[layer]
if m == 0 {
// Do not consider layers with zero sum edge weight.
continue
}
w := 1.0
if l.weights != nil {
w = l.weights[layer]
}
if w == 0 {
// Do not consider layers with zero weighting.
continue
}
var k_aC, sigma_totC directedWeights // C is a substitution for ^𝛼 or ^𝛽.
removal = false
for j, u := range c {
uid := u.ID()
if uid == id {
// Only mark and check src community on the first layer.
if layer == 0 {
if src.community != -1 {
panic("community: multiple sources")
}
src = commIdx{i, j}
}
removal = true
}
k_aC.in += l.weight[layer](id, uid)
k_aC.out += l.weight[layer](uid, id)
// sigma_totC could be kept for each community
// and updated for moves, changing the calculation
// of sigma_totC here from O(n_c) to O(1), but
// in practice the time savings do not appear
// to be compelling and do not make up for the
// increase in code complexity and space required.
w := l.edgeWeightsOf[layer][uid]
sigma_totC.in += w.in
sigma_totC.out += w.out
}
a_aa := l.weight[layer](id, id)
k_a := l.edgeWeightsOf[layer][id]
gamma := 1.0
if l.resolutions != nil {
if len(l.resolutions) == 1 {
gamma = l.resolutions[0]
} else {
gamma = l.resolutions[layer]
}
}
// See louvain.tex for a derivation of these equations.
// The weighting term, w, is described in V Traag,
// "Algorithms and dynamical models for communities and
// reputation in social networks", chapter 5.
// http://www.traag.net/wp/wp-content/papercite-data/pdf/traag_algorithms_2013.pdf
switch {
case removal:
// The community c was the current community,
// so calculate the change due to removal.
dQremove += w * ((k_aC.in /*^𝛼*/ - a_aa) + (k_aC.out /*^𝛼*/ - a_aa) -
gamma*(k_a.in*(sigma_totC.out /*^𝛼*/ -k_a.out)+k_a.out*(sigma_totC.in /*^𝛼*/ -k_a.in))/m)
default:
// Otherwise calculate the change due to an addition
// to c.
_dQadd += w * (k_aC.in /*^𝛽*/ + k_aC.out /*^𝛽*/ -
gamma*(k_a.in*sigma_totC.out /*^𝛽*/ +k_a.out*sigma_totC.in /*^𝛽*/)/m)
}
}
if !removal && _dQadd > dQadd {
dQadd = _dQadd
dst = i
}
}
return dQadd - dQremove, dst, src
}