mirror of
https://github.com/gonum/gonum.git
synced 2025-10-18 13:10:47 +08:00
676 lines
18 KiB
Go
676 lines
18 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package community
|
||
|
||
import (
|
||
"math"
|
||
"math/rand/v2"
|
||
"slices"
|
||
|
||
"gonum.org/v1/gonum/graph"
|
||
"gonum.org/v1/gonum/graph/internal/set"
|
||
"gonum.org/v1/gonum/graph/iterator"
|
||
"gonum.org/v1/gonum/internal/order"
|
||
)
|
||
|
||
// qDirected returns the modularity Q score of the graph g subdivided into the
|
||
// given communities at the given resolution. If communities is nil, the
|
||
// unclustered modularity score is returned. The resolution parameter
|
||
// is γ as defined in Reichardt and Bornholdt doi:10.1103/PhysRevE.74.016110.
|
||
// qDirected will panic if g has any edge with negative edge weight.
|
||
//
|
||
// Q = 1/m \sum_{ij} [ A_{ij} - (\gamma k_i^in k_j^out)/m ] \delta(c_i,c_j)
|
||
func qDirected(g graph.Directed, communities [][]graph.Node, resolution float64) float64 {
|
||
nodes := graph.NodesOf(g.Nodes())
|
||
weight := positiveWeightFuncFor(g)
|
||
|
||
// Calculate the total edge weight of the graph
|
||
// and the table of penetrating edge weight sums.
|
||
var m float64
|
||
k := make(map[int64]directedWeights, len(nodes))
|
||
for _, n := range nodes {
|
||
var wOut float64
|
||
u := n
|
||
uid := u.ID()
|
||
to := g.From(uid)
|
||
for to.Next() {
|
||
wOut += weight(uid, to.Node().ID())
|
||
}
|
||
var wIn float64
|
||
v := n
|
||
vid := v.ID()
|
||
from := g.To(vid)
|
||
for from.Next() {
|
||
wIn += weight(from.Node().ID(), vid)
|
||
}
|
||
id := n.ID()
|
||
w := weight(id, id)
|
||
m += w + wOut // We only need to count edges once.
|
||
k[id] = directedWeights{out: w + wOut, in: w + wIn}
|
||
}
|
||
|
||
if communities == nil {
|
||
var q float64
|
||
for _, u := range nodes {
|
||
uid := u.ID()
|
||
kU := k[uid]
|
||
q += weight(uid, uid) - resolution*kU.out*kU.in/m
|
||
}
|
||
return q / m
|
||
}
|
||
|
||
var q float64
|
||
for _, c := range communities {
|
||
for _, u := range c {
|
||
uid := u.ID()
|
||
kU := k[uid]
|
||
for _, v := range c {
|
||
vid := v.ID()
|
||
kV := k[vid]
|
||
q += weight(uid, vid) - resolution*kU.out*kV.in/m
|
||
}
|
||
}
|
||
}
|
||
return q / m
|
||
}
|
||
|
||
// louvainDirected returns the hierarchical modularization of g at the given
|
||
// resolution using the Louvain algorithm. If src is nil, rand.IntN is used
|
||
// as the random generator. louvainDirected will panic if g has any edge with negative
|
||
// edge weight.
|
||
func louvainDirected(g graph.Directed, resolution float64, src rand.Source) ReducedGraph {
|
||
// See louvain.tex for a detailed description
|
||
// of the algorithm used here.
|
||
|
||
c := reduceDirected(g, nil)
|
||
rnd := rand.IntN
|
||
if src != nil {
|
||
rnd = rand.New(src).IntN
|
||
}
|
||
for {
|
||
l := newDirectedLocalMover(c, c.communities, resolution)
|
||
if l == nil {
|
||
return c
|
||
}
|
||
if done := l.localMovingHeuristic(rnd); done {
|
||
return c
|
||
}
|
||
c = reduceDirected(c, l.communities)
|
||
}
|
||
}
|
||
|
||
// ReducedDirected is a directed graph of communities derived from a
|
||
// parent graph by reduction.
|
||
type ReducedDirected struct {
|
||
// nodes is the set of nodes held
|
||
// by the graph. In a ReducedDirected
|
||
// the node ID is the index into
|
||
// nodes.
|
||
nodes []community
|
||
directedEdges
|
||
|
||
// communities is the community
|
||
// structure of the graph.
|
||
communities [][]graph.Node
|
||
|
||
parent *ReducedDirected
|
||
}
|
||
|
||
var (
|
||
reducedDirected = (*ReducedDirected)(nil)
|
||
|
||
_ graph.WeightedDirected = reducedDirected
|
||
_ ReducedGraph = reducedDirected
|
||
)
|
||
|
||
// Communities returns the community memberships of the nodes in the
|
||
// graph used to generate the reduced graph.
|
||
func (g *ReducedDirected) Communities() [][]graph.Node {
|
||
communities := make([][]graph.Node, len(g.communities))
|
||
if g.parent == nil {
|
||
for i, members := range g.communities {
|
||
comm := make([]graph.Node, len(members))
|
||
for j, n := range members {
|
||
nodes := g.nodes[n.ID()].nodes
|
||
if len(nodes) != 1 {
|
||
panic("community: unexpected number of nodes in base graph community")
|
||
}
|
||
comm[j] = nodes[0]
|
||
}
|
||
communities[i] = comm
|
||
}
|
||
return communities
|
||
}
|
||
sub := g.parent.Communities()
|
||
for i, members := range g.communities {
|
||
var comm []graph.Node
|
||
for _, n := range members {
|
||
comm = append(comm, sub[n.ID()]...)
|
||
}
|
||
communities[i] = comm
|
||
}
|
||
return communities
|
||
}
|
||
|
||
// Structure returns the community structure of the current level of
|
||
// the module clustering. The first index of the returned value
|
||
// corresponds to the index of the nodes in the next higher level if
|
||
// it exists. The returned value should not be mutated.
|
||
func (g *ReducedDirected) Structure() [][]graph.Node {
|
||
return g.communities
|
||
}
|
||
|
||
// Expanded returns the next lower level of the module clustering or nil
|
||
// if at the lowest level.
|
||
func (g *ReducedDirected) Expanded() ReducedGraph {
|
||
return g.parent
|
||
}
|
||
|
||
// reduceDirected returns a reduced graph constructed from g divided
|
||
// into the given communities. The communities value is mutated
|
||
// by the call to reduceDirected. If communities is nil and g is a
|
||
// ReducedDirected, it is returned unaltered.
|
||
func reduceDirected(g graph.Directed, communities [][]graph.Node) *ReducedDirected {
|
||
if communities == nil {
|
||
if r, ok := g.(*ReducedDirected); ok {
|
||
return r
|
||
}
|
||
|
||
nodes := graph.NodesOf(g.Nodes())
|
||
// TODO(kortschak) This sort is necessary really only
|
||
// for testing. In practice we would not be using the
|
||
// community provided by the user for a Q calculation.
|
||
// Probably we should use a function to map the
|
||
// communities in the test sets to the remapped order.
|
||
order.ByID(nodes)
|
||
communities = make([][]graph.Node, len(nodes))
|
||
for i := range nodes {
|
||
communities[i] = []graph.Node{node(i)}
|
||
}
|
||
|
||
weight := positiveWeightFuncFor(g)
|
||
r := ReducedDirected{
|
||
nodes: make([]community, len(nodes)),
|
||
directedEdges: directedEdges{
|
||
edgesFrom: make([][]int, len(nodes)),
|
||
edgesTo: make([][]int, len(nodes)),
|
||
weights: make(map[[2]int]float64),
|
||
},
|
||
communities: communities,
|
||
}
|
||
communityOf := make(map[int64]int, len(nodes))
|
||
for i, n := range nodes {
|
||
r.nodes[i] = community{id: i, nodes: []graph.Node{n}}
|
||
communityOf[n.ID()] = i
|
||
}
|
||
for _, n := range nodes {
|
||
id := communityOf[n.ID()]
|
||
|
||
var out []int
|
||
u := n
|
||
uid := u.ID()
|
||
to := g.From(uid)
|
||
for to.Next() {
|
||
vid := to.Node().ID()
|
||
vcid := communityOf[vid]
|
||
if vcid != id {
|
||
out = append(out, vcid)
|
||
}
|
||
r.weights[[2]int{id, vcid}] = weight(uid, vid)
|
||
}
|
||
r.edgesFrom[id] = out
|
||
|
||
var in []int
|
||
v := n
|
||
vid := v.ID()
|
||
from := g.To(vid)
|
||
for from.Next() {
|
||
uid := from.Node().ID()
|
||
ucid := communityOf[uid]
|
||
if ucid != id {
|
||
in = append(in, ucid)
|
||
}
|
||
r.weights[[2]int{ucid, id}] = weight(uid, vid)
|
||
}
|
||
r.edgesTo[id] = in
|
||
}
|
||
return &r
|
||
}
|
||
|
||
// Remove zero length communities destructively.
|
||
var commNodes int
|
||
for i := 0; i < len(communities); {
|
||
comm := communities[i]
|
||
if len(comm) == 0 {
|
||
communities[i] = communities[len(communities)-1]
|
||
communities[len(communities)-1] = nil
|
||
communities = communities[:len(communities)-1]
|
||
} else {
|
||
commNodes += len(comm)
|
||
i++
|
||
}
|
||
}
|
||
|
||
r := ReducedDirected{
|
||
nodes: make([]community, len(communities)),
|
||
directedEdges: directedEdges{
|
||
edgesFrom: make([][]int, len(communities)),
|
||
edgesTo: make([][]int, len(communities)),
|
||
weights: make(map[[2]int]float64),
|
||
},
|
||
}
|
||
r.communities = make([][]graph.Node, len(communities))
|
||
for i := range r.communities {
|
||
r.communities[i] = []graph.Node{node(i)}
|
||
}
|
||
if g, ok := g.(*ReducedDirected); ok {
|
||
// Make sure we retain the truncated
|
||
// community structure.
|
||
g.communities = communities
|
||
r.parent = g
|
||
}
|
||
weight := positiveWeightFuncFor(g)
|
||
communityOf := make(map[int64]int, commNodes)
|
||
for i, comm := range communities {
|
||
r.nodes[i] = community{id: i, nodes: comm}
|
||
for _, n := range comm {
|
||
communityOf[n.ID()] = i
|
||
}
|
||
}
|
||
for id, comm := range communities {
|
||
var out, in []int
|
||
for _, n := range comm {
|
||
u := n
|
||
uid := u.ID()
|
||
for _, v := range comm {
|
||
r.nodes[id].weight += weight(uid, v.ID())
|
||
}
|
||
|
||
to := g.From(uid)
|
||
for to.Next() {
|
||
vid := to.Node().ID()
|
||
vcid := communityOf[vid]
|
||
found := false
|
||
for _, e := range out {
|
||
if e == vcid {
|
||
found = true
|
||
break
|
||
}
|
||
}
|
||
if !found && vcid != id {
|
||
out = append(out, vcid)
|
||
}
|
||
// Add half weights because the other
|
||
// ends of edges are also counted.
|
||
r.weights[[2]int{id, vcid}] += weight(uid, vid) / 2
|
||
}
|
||
|
||
v := n
|
||
vid := v.ID()
|
||
from := g.To(vid)
|
||
for from.Next() {
|
||
uid := from.Node().ID()
|
||
ucid := communityOf[uid]
|
||
found := false
|
||
for _, e := range in {
|
||
if e == ucid {
|
||
found = true
|
||
break
|
||
}
|
||
}
|
||
if !found && ucid != id {
|
||
in = append(in, ucid)
|
||
}
|
||
// Add half weights because the other
|
||
// ends of edges are also counted.
|
||
r.weights[[2]int{ucid, id}] += weight(uid, vid) / 2
|
||
}
|
||
}
|
||
r.edgesFrom[id] = out
|
||
r.edgesTo[id] = in
|
||
}
|
||
return &r
|
||
}
|
||
|
||
// Node returns the node with the given ID if it exists in the graph,
|
||
// and nil otherwise.
|
||
func (g *ReducedDirected) Node(id int64) graph.Node {
|
||
if g.has(id) {
|
||
return g.nodes[id]
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// has returns whether the node exists within the graph.
|
||
func (g *ReducedDirected) has(id int64) bool {
|
||
return 0 <= id && id < int64(len(g.nodes))
|
||
}
|
||
|
||
// Nodes returns all the nodes in the graph.
|
||
func (g *ReducedDirected) Nodes() graph.Nodes {
|
||
nodes := make([]graph.Node, len(g.nodes))
|
||
for i := range g.nodes {
|
||
nodes[i] = node(i)
|
||
}
|
||
return iterator.NewOrderedNodes(nodes)
|
||
}
|
||
|
||
// From returns all nodes in g that can be reached directly from u.
|
||
func (g *ReducedDirected) From(uid int64) graph.Nodes {
|
||
out := g.edgesFrom[uid]
|
||
nodes := make([]graph.Node, len(out))
|
||
for i, vid := range out {
|
||
nodes[i] = g.nodes[vid]
|
||
}
|
||
return iterator.NewOrderedNodes(nodes)
|
||
}
|
||
|
||
// To returns all nodes in g that can reach directly to v.
|
||
func (g *ReducedDirected) To(vid int64) graph.Nodes {
|
||
in := g.edgesTo[vid]
|
||
nodes := make([]graph.Node, len(in))
|
||
for i, uid := range in {
|
||
nodes[i] = g.nodes[uid]
|
||
}
|
||
return iterator.NewOrderedNodes(nodes)
|
||
}
|
||
|
||
// HasEdgeBetween returns whether an edge exists between nodes x and y.
|
||
func (g *ReducedDirected) HasEdgeBetween(xid, yid int64) bool {
|
||
if xid == yid || !isValidID(xid) || !isValidID(yid) {
|
||
return false
|
||
}
|
||
_, ok := g.weights[[2]int{int(xid), int(yid)}]
|
||
if ok {
|
||
return true
|
||
}
|
||
_, ok = g.weights[[2]int{int(yid), int(xid)}]
|
||
return ok
|
||
}
|
||
|
||
// HasEdgeFromTo returns whether an edge exists from node u to v.
|
||
func (g *ReducedDirected) HasEdgeFromTo(uid, vid int64) bool {
|
||
if uid == vid || !isValidID(uid) || !isValidID(vid) {
|
||
return false
|
||
}
|
||
_, ok := g.weights[[2]int{int(uid), int(vid)}]
|
||
return ok
|
||
}
|
||
|
||
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
|
||
// The node v must be directly reachable from u as defined by the From method.
|
||
func (g *ReducedDirected) Edge(uid, vid int64) graph.Edge {
|
||
return g.WeightedEdge(uid, vid)
|
||
}
|
||
|
||
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
|
||
// The node v must be directly reachable from u as defined by the From method.
|
||
func (g *ReducedDirected) WeightedEdge(uid, vid int64) graph.WeightedEdge {
|
||
if uid == vid || !isValidID(uid) || !isValidID(vid) {
|
||
return nil
|
||
}
|
||
w, ok := g.weights[[2]int{int(uid), int(vid)}]
|
||
if !ok {
|
||
return nil
|
||
}
|
||
return edge{from: g.nodes[uid], to: g.nodes[vid], weight: w}
|
||
}
|
||
|
||
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
|
||
// If x and y are the same node the internal node weight is returned. If there is no joining
|
||
// edge between the two nodes the weight value returned is zero. Weight returns true if an edge
|
||
// exists between x and y or if x and y have the same ID, false otherwise.
|
||
func (g *ReducedDirected) Weight(xid, yid int64) (w float64, ok bool) {
|
||
if !isValidID(xid) || !isValidID(yid) {
|
||
return 0, false
|
||
}
|
||
if xid == yid {
|
||
return g.nodes[xid].weight, true
|
||
}
|
||
w, ok = g.weights[[2]int{int(xid), int(yid)}]
|
||
return w, ok
|
||
}
|
||
|
||
// directedLocalMover is a step in graph modularity optimization.
|
||
type directedLocalMover struct {
|
||
g *ReducedDirected
|
||
|
||
// nodes is the set of working nodes.
|
||
nodes []graph.Node
|
||
// edgeWeightsOf is the weighted degree
|
||
// of each node indexed by ID.
|
||
edgeWeightsOf []directedWeights
|
||
|
||
// m is the total sum of edge
|
||
// weights in g.
|
||
m float64
|
||
|
||
// weight is the weight function
|
||
// provided by g or a function
|
||
// that returns the Weight value
|
||
// of the non-nil edge between x
|
||
// and y.
|
||
weight func(xid, yid int64) float64
|
||
|
||
// communities is the current
|
||
// division of g.
|
||
communities [][]graph.Node
|
||
// memberships is a mapping between
|
||
// node ID and community membership.
|
||
memberships []int
|
||
|
||
// resolution is the Reichardt and
|
||
// Bornholdt γ parameter as defined
|
||
// in doi:10.1103/PhysRevE.74.016110.
|
||
resolution float64
|
||
|
||
// moved indicates that a call to
|
||
// move has been made since the last
|
||
// call to shuffle.
|
||
moved bool
|
||
|
||
// changed indicates that a move
|
||
// has been made since the creation
|
||
// of the local mover.
|
||
changed bool
|
||
}
|
||
|
||
type directedWeights struct {
|
||
out, in float64
|
||
}
|
||
|
||
// newDirectedLocalMover returns a new directedLocalMover initialized with
|
||
// the graph g, a set of communities and a modularity resolution parameter.
|
||
// The node IDs of g must be contiguous in [0,n) where n is the number of
|
||
// nodes.
|
||
// If g has a zero edge weight sum, nil is returned.
|
||
func newDirectedLocalMover(g *ReducedDirected, communities [][]graph.Node, resolution float64) *directedLocalMover {
|
||
nodes := graph.NodesOf(g.Nodes())
|
||
l := directedLocalMover{
|
||
g: g,
|
||
nodes: nodes,
|
||
edgeWeightsOf: make([]directedWeights, len(nodes)),
|
||
communities: communities,
|
||
memberships: make([]int, len(nodes)),
|
||
resolution: resolution,
|
||
weight: positiveWeightFuncFor(g),
|
||
}
|
||
|
||
// Calculate the total edge weight of the graph
|
||
// and degree weights for each node.
|
||
for _, n := range l.nodes {
|
||
u := n
|
||
var wOut float64
|
||
uid := u.ID()
|
||
to := g.From(uid)
|
||
for to.Next() {
|
||
wOut += l.weight(uid, to.Node().ID())
|
||
}
|
||
|
||
v := n
|
||
var wIn float64
|
||
vid := v.ID()
|
||
from := g.To(vid)
|
||
for from.Next() {
|
||
wIn += l.weight(from.Node().ID(), vid)
|
||
}
|
||
|
||
id := n.ID()
|
||
w := l.weight(id, id)
|
||
l.edgeWeightsOf[id] = directedWeights{out: w + wOut, in: w + wIn}
|
||
l.m += w + wOut
|
||
}
|
||
|
||
// Assign membership mappings.
|
||
for i, c := range communities {
|
||
for _, n := range c {
|
||
l.memberships[n.ID()] = i
|
||
}
|
||
}
|
||
|
||
return &l
|
||
}
|
||
|
||
// localMovingHeuristic performs the Louvain local moving heuristic until
|
||
// no further moves can be made. It returns a boolean indicating that the
|
||
// directedLocalMover has not made any improvement to the community structure and
|
||
// so the Louvain algorithm is done.
|
||
func (l *directedLocalMover) localMovingHeuristic(rnd func(int) int) (done bool) {
|
||
for {
|
||
l.shuffle(rnd)
|
||
for _, n := range l.nodes {
|
||
dQ, dst, src := l.deltaQ(n)
|
||
if dQ <= deltaQtol {
|
||
continue
|
||
}
|
||
l.move(dst, src)
|
||
}
|
||
if !l.moved {
|
||
return !l.changed
|
||
}
|
||
}
|
||
}
|
||
|
||
// shuffle performs a Fisher-Yates shuffle on the nodes held by the
|
||
// directedLocalMover using the random source rnd which should return an
|
||
// integer in the range [0,n).
|
||
func (l *directedLocalMover) shuffle(rnd func(n int) int) {
|
||
l.moved = false
|
||
for i := range l.nodes[:len(l.nodes)-1] {
|
||
j := i + rnd(len(l.nodes)-i)
|
||
l.nodes[i], l.nodes[j] = l.nodes[j], l.nodes[i]
|
||
}
|
||
}
|
||
|
||
// move moves the node at src to the community at dst.
|
||
func (l *directedLocalMover) move(dst int, src commIdx) {
|
||
l.moved = true
|
||
l.changed = true
|
||
|
||
srcComm := l.communities[src.community]
|
||
n := srcComm[src.node]
|
||
|
||
l.memberships[n.ID()] = dst
|
||
|
||
l.communities[dst] = append(l.communities[dst], n)
|
||
srcComm[src.node], srcComm[len(srcComm)-1] = srcComm[len(srcComm)-1], nil
|
||
l.communities[src.community] = srcComm[:len(srcComm)-1]
|
||
}
|
||
|
||
// deltaQ returns the highest gain in modularity attainable by moving
|
||
// n from its current community to another connected community and
|
||
// the index of the chosen destination. The index into the directedLocalMover's
|
||
// communities field is returned in src if n is in communities.
|
||
func (l *directedLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, src commIdx) {
|
||
id := n.ID()
|
||
|
||
a_aa := l.weight(id, id)
|
||
k_a := l.edgeWeightsOf[id]
|
||
m := l.m
|
||
gamma := l.resolution
|
||
|
||
// Find communities connected to n.
|
||
connected := make(set.Ints[int])
|
||
// The following for loop is equivalent to:
|
||
//
|
||
// for _, v := range l.g.From(n) {
|
||
// connected.Add(l.memberships[v.ID()])
|
||
// }
|
||
// for _, v := range l.g.To(n) {
|
||
// connected.Add(l.memberships[v.ID()])
|
||
// }
|
||
//
|
||
// This is done to avoid two allocations.
|
||
for _, vid := range l.g.edgesFrom[id] {
|
||
connected.Add(l.memberships[vid])
|
||
}
|
||
for _, vid := range l.g.edgesTo[id] {
|
||
connected.Add(l.memberships[vid])
|
||
}
|
||
// Insert the node's own community.
|
||
connected.Add(l.memberships[id])
|
||
|
||
candidates := make([]int, 0, len(connected))
|
||
for i := range connected {
|
||
candidates = append(candidates, i)
|
||
}
|
||
slices.Sort(candidates)
|
||
|
||
// Calculate the highest modularity gain
|
||
// from moving into another community and
|
||
// keep the index of that community.
|
||
var dQremove float64
|
||
dQadd, dst, src := math.Inf(-1), -1, commIdx{-1, -1}
|
||
for _, i := range candidates {
|
||
c := l.communities[i]
|
||
var k_aC, sigma_totC directedWeights // C is a substitution for ^𝛼 or ^𝛽.
|
||
var removal bool
|
||
for j, u := range c {
|
||
uid := u.ID()
|
||
if uid == id {
|
||
if src.community != -1 {
|
||
panic("community: multiple sources")
|
||
}
|
||
src = commIdx{i, j}
|
||
removal = true
|
||
}
|
||
|
||
k_aC.in += l.weight(uid, id)
|
||
k_aC.out += l.weight(id, uid)
|
||
// sigma_totC could be kept for each community
|
||
// and updated for moves, changing the calculation
|
||
// of sigma_totC here from O(n_c) to O(1), but
|
||
// in practice the time savings do not appear
|
||
// to be compelling and do not make up for the
|
||
// increase in code complexity and space required.
|
||
w := l.edgeWeightsOf[uid]
|
||
sigma_totC.in += w.in
|
||
sigma_totC.out += w.out
|
||
}
|
||
|
||
// See louvain.tex for a derivation of these equations.
|
||
switch {
|
||
case removal:
|
||
// The community c was the current community,
|
||
// so calculate the change due to removal.
|
||
dQremove = (k_aC.in /*^𝛼*/ - a_aa) + (k_aC.out /*^𝛼*/ - a_aa) -
|
||
gamma*(k_a.in*(sigma_totC.out /*^𝛼*/ -k_a.out)+k_a.out*(sigma_totC.in /*^𝛼*/ -k_a.in))/m
|
||
|
||
default:
|
||
// Otherwise calculate the change due to an addition
|
||
// to c and retain if it is the current best.
|
||
dQ := k_aC.in /*^𝛽*/ + k_aC.out /*^𝛽*/ -
|
||
gamma*(k_a.in*sigma_totC.out /*^𝛽*/ +k_a.out*sigma_totC.in /*^𝛽*/)/m
|
||
|
||
if dQ > dQadd {
|
||
dQadd = dQ
|
||
dst = i
|
||
}
|
||
}
|
||
}
|
||
|
||
return (dQadd - dQremove) / m, dst, src
|
||
}
|