Files
gonum/graph/community/louvain_directed.go
2025-02-01 22:18:04 +10:30

676 lines
18 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package community
import (
"math"
"math/rand/v2"
"slices"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/set"
"gonum.org/v1/gonum/graph/iterator"
"gonum.org/v1/gonum/internal/order"
)
// qDirected returns the modularity Q score of the graph g subdivided into the
// given communities at the given resolution. If communities is nil, the
// unclustered modularity score is returned. The resolution parameter
// is γ as defined in Reichardt and Bornholdt doi:10.1103/PhysRevE.74.016110.
// qDirected will panic if g has any edge with negative edge weight.
//
// Q = 1/m \sum_{ij} [ A_{ij} - (\gamma k_i^in k_j^out)/m ] \delta(c_i,c_j)
func qDirected(g graph.Directed, communities [][]graph.Node, resolution float64) float64 {
nodes := graph.NodesOf(g.Nodes())
weight := positiveWeightFuncFor(g)
// Calculate the total edge weight of the graph
// and the table of penetrating edge weight sums.
var m float64
k := make(map[int64]directedWeights, len(nodes))
for _, n := range nodes {
var wOut float64
u := n
uid := u.ID()
to := g.From(uid)
for to.Next() {
wOut += weight(uid, to.Node().ID())
}
var wIn float64
v := n
vid := v.ID()
from := g.To(vid)
for from.Next() {
wIn += weight(from.Node().ID(), vid)
}
id := n.ID()
w := weight(id, id)
m += w + wOut // We only need to count edges once.
k[id] = directedWeights{out: w + wOut, in: w + wIn}
}
if communities == nil {
var q float64
for _, u := range nodes {
uid := u.ID()
kU := k[uid]
q += weight(uid, uid) - resolution*kU.out*kU.in/m
}
return q / m
}
var q float64
for _, c := range communities {
for _, u := range c {
uid := u.ID()
kU := k[uid]
for _, v := range c {
vid := v.ID()
kV := k[vid]
q += weight(uid, vid) - resolution*kU.out*kV.in/m
}
}
}
return q / m
}
// louvainDirected returns the hierarchical modularization of g at the given
// resolution using the Louvain algorithm. If src is nil, rand.IntN is used
// as the random generator. louvainDirected will panic if g has any edge with negative
// edge weight.
func louvainDirected(g graph.Directed, resolution float64, src rand.Source) ReducedGraph {
// See louvain.tex for a detailed description
// of the algorithm used here.
c := reduceDirected(g, nil)
rnd := rand.IntN
if src != nil {
rnd = rand.New(src).IntN
}
for {
l := newDirectedLocalMover(c, c.communities, resolution)
if l == nil {
return c
}
if done := l.localMovingHeuristic(rnd); done {
return c
}
c = reduceDirected(c, l.communities)
}
}
// ReducedDirected is a directed graph of communities derived from a
// parent graph by reduction.
type ReducedDirected struct {
// nodes is the set of nodes held
// by the graph. In a ReducedDirected
// the node ID is the index into
// nodes.
nodes []community
directedEdges
// communities is the community
// structure of the graph.
communities [][]graph.Node
parent *ReducedDirected
}
var (
reducedDirected = (*ReducedDirected)(nil)
_ graph.WeightedDirected = reducedDirected
_ ReducedGraph = reducedDirected
)
// Communities returns the community memberships of the nodes in the
// graph used to generate the reduced graph.
func (g *ReducedDirected) Communities() [][]graph.Node {
communities := make([][]graph.Node, len(g.communities))
if g.parent == nil {
for i, members := range g.communities {
comm := make([]graph.Node, len(members))
for j, n := range members {
nodes := g.nodes[n.ID()].nodes
if len(nodes) != 1 {
panic("community: unexpected number of nodes in base graph community")
}
comm[j] = nodes[0]
}
communities[i] = comm
}
return communities
}
sub := g.parent.Communities()
for i, members := range g.communities {
var comm []graph.Node
for _, n := range members {
comm = append(comm, sub[n.ID()]...)
}
communities[i] = comm
}
return communities
}
// Structure returns the community structure of the current level of
// the module clustering. The first index of the returned value
// corresponds to the index of the nodes in the next higher level if
// it exists. The returned value should not be mutated.
func (g *ReducedDirected) Structure() [][]graph.Node {
return g.communities
}
// Expanded returns the next lower level of the module clustering or nil
// if at the lowest level.
func (g *ReducedDirected) Expanded() ReducedGraph {
return g.parent
}
// reduceDirected returns a reduced graph constructed from g divided
// into the given communities. The communities value is mutated
// by the call to reduceDirected. If communities is nil and g is a
// ReducedDirected, it is returned unaltered.
func reduceDirected(g graph.Directed, communities [][]graph.Node) *ReducedDirected {
if communities == nil {
if r, ok := g.(*ReducedDirected); ok {
return r
}
nodes := graph.NodesOf(g.Nodes())
// TODO(kortschak) This sort is necessary really only
// for testing. In practice we would not be using the
// community provided by the user for a Q calculation.
// Probably we should use a function to map the
// communities in the test sets to the remapped order.
order.ByID(nodes)
communities = make([][]graph.Node, len(nodes))
for i := range nodes {
communities[i] = []graph.Node{node(i)}
}
weight := positiveWeightFuncFor(g)
r := ReducedDirected{
nodes: make([]community, len(nodes)),
directedEdges: directedEdges{
edgesFrom: make([][]int, len(nodes)),
edgesTo: make([][]int, len(nodes)),
weights: make(map[[2]int]float64),
},
communities: communities,
}
communityOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
r.nodes[i] = community{id: i, nodes: []graph.Node{n}}
communityOf[n.ID()] = i
}
for _, n := range nodes {
id := communityOf[n.ID()]
var out []int
u := n
uid := u.ID()
to := g.From(uid)
for to.Next() {
vid := to.Node().ID()
vcid := communityOf[vid]
if vcid != id {
out = append(out, vcid)
}
r.weights[[2]int{id, vcid}] = weight(uid, vid)
}
r.edgesFrom[id] = out
var in []int
v := n
vid := v.ID()
from := g.To(vid)
for from.Next() {
uid := from.Node().ID()
ucid := communityOf[uid]
if ucid != id {
in = append(in, ucid)
}
r.weights[[2]int{ucid, id}] = weight(uid, vid)
}
r.edgesTo[id] = in
}
return &r
}
// Remove zero length communities destructively.
var commNodes int
for i := 0; i < len(communities); {
comm := communities[i]
if len(comm) == 0 {
communities[i] = communities[len(communities)-1]
communities[len(communities)-1] = nil
communities = communities[:len(communities)-1]
} else {
commNodes += len(comm)
i++
}
}
r := ReducedDirected{
nodes: make([]community, len(communities)),
directedEdges: directedEdges{
edgesFrom: make([][]int, len(communities)),
edgesTo: make([][]int, len(communities)),
weights: make(map[[2]int]float64),
},
}
r.communities = make([][]graph.Node, len(communities))
for i := range r.communities {
r.communities[i] = []graph.Node{node(i)}
}
if g, ok := g.(*ReducedDirected); ok {
// Make sure we retain the truncated
// community structure.
g.communities = communities
r.parent = g
}
weight := positiveWeightFuncFor(g)
communityOf := make(map[int64]int, commNodes)
for i, comm := range communities {
r.nodes[i] = community{id: i, nodes: comm}
for _, n := range comm {
communityOf[n.ID()] = i
}
}
for id, comm := range communities {
var out, in []int
for _, n := range comm {
u := n
uid := u.ID()
for _, v := range comm {
r.nodes[id].weight += weight(uid, v.ID())
}
to := g.From(uid)
for to.Next() {
vid := to.Node().ID()
vcid := communityOf[vid]
found := false
for _, e := range out {
if e == vcid {
found = true
break
}
}
if !found && vcid != id {
out = append(out, vcid)
}
// Add half weights because the other
// ends of edges are also counted.
r.weights[[2]int{id, vcid}] += weight(uid, vid) / 2
}
v := n
vid := v.ID()
from := g.To(vid)
for from.Next() {
uid := from.Node().ID()
ucid := communityOf[uid]
found := false
for _, e := range in {
if e == ucid {
found = true
break
}
}
if !found && ucid != id {
in = append(in, ucid)
}
// Add half weights because the other
// ends of edges are also counted.
r.weights[[2]int{ucid, id}] += weight(uid, vid) / 2
}
}
r.edgesFrom[id] = out
r.edgesTo[id] = in
}
return &r
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *ReducedDirected) Node(id int64) graph.Node {
if g.has(id) {
return g.nodes[id]
}
return nil
}
// has returns whether the node exists within the graph.
func (g *ReducedDirected) has(id int64) bool {
return 0 <= id && id < int64(len(g.nodes))
}
// Nodes returns all the nodes in the graph.
func (g *ReducedDirected) Nodes() graph.Nodes {
nodes := make([]graph.Node, len(g.nodes))
for i := range g.nodes {
nodes[i] = node(i)
}
return iterator.NewOrderedNodes(nodes)
}
// From returns all nodes in g that can be reached directly from u.
func (g *ReducedDirected) From(uid int64) graph.Nodes {
out := g.edgesFrom[uid]
nodes := make([]graph.Node, len(out))
for i, vid := range out {
nodes[i] = g.nodes[vid]
}
return iterator.NewOrderedNodes(nodes)
}
// To returns all nodes in g that can reach directly to v.
func (g *ReducedDirected) To(vid int64) graph.Nodes {
in := g.edgesTo[vid]
nodes := make([]graph.Node, len(in))
for i, uid := range in {
nodes[i] = g.nodes[uid]
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *ReducedDirected) HasEdgeBetween(xid, yid int64) bool {
if xid == yid || !isValidID(xid) || !isValidID(yid) {
return false
}
_, ok := g.weights[[2]int{int(xid), int(yid)}]
if ok {
return true
}
_, ok = g.weights[[2]int{int(yid), int(xid)}]
return ok
}
// HasEdgeFromTo returns whether an edge exists from node u to v.
func (g *ReducedDirected) HasEdgeFromTo(uid, vid int64) bool {
if uid == vid || !isValidID(uid) || !isValidID(vid) {
return false
}
_, ok := g.weights[[2]int{int(uid), int(vid)}]
return ok
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *ReducedDirected) Edge(uid, vid int64) graph.Edge {
return g.WeightedEdge(uid, vid)
}
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *ReducedDirected) WeightedEdge(uid, vid int64) graph.WeightedEdge {
if uid == vid || !isValidID(uid) || !isValidID(vid) {
return nil
}
w, ok := g.weights[[2]int{int(uid), int(vid)}]
if !ok {
return nil
}
return edge{from: g.nodes[uid], to: g.nodes[vid], weight: w}
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node the internal node weight is returned. If there is no joining
// edge between the two nodes the weight value returned is zero. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *ReducedDirected) Weight(xid, yid int64) (w float64, ok bool) {
if !isValidID(xid) || !isValidID(yid) {
return 0, false
}
if xid == yid {
return g.nodes[xid].weight, true
}
w, ok = g.weights[[2]int{int(xid), int(yid)}]
return w, ok
}
// directedLocalMover is a step in graph modularity optimization.
type directedLocalMover struct {
g *ReducedDirected
// nodes is the set of working nodes.
nodes []graph.Node
// edgeWeightsOf is the weighted degree
// of each node indexed by ID.
edgeWeightsOf []directedWeights
// m is the total sum of edge
// weights in g.
m float64
// weight is the weight function
// provided by g or a function
// that returns the Weight value
// of the non-nil edge between x
// and y.
weight func(xid, yid int64) float64
// communities is the current
// division of g.
communities [][]graph.Node
// memberships is a mapping between
// node ID and community membership.
memberships []int
// resolution is the Reichardt and
// Bornholdt γ parameter as defined
// in doi:10.1103/PhysRevE.74.016110.
resolution float64
// moved indicates that a call to
// move has been made since the last
// call to shuffle.
moved bool
// changed indicates that a move
// has been made since the creation
// of the local mover.
changed bool
}
type directedWeights struct {
out, in float64
}
// newDirectedLocalMover returns a new directedLocalMover initialized with
// the graph g, a set of communities and a modularity resolution parameter.
// The node IDs of g must be contiguous in [0,n) where n is the number of
// nodes.
// If g has a zero edge weight sum, nil is returned.
func newDirectedLocalMover(g *ReducedDirected, communities [][]graph.Node, resolution float64) *directedLocalMover {
nodes := graph.NodesOf(g.Nodes())
l := directedLocalMover{
g: g,
nodes: nodes,
edgeWeightsOf: make([]directedWeights, len(nodes)),
communities: communities,
memberships: make([]int, len(nodes)),
resolution: resolution,
weight: positiveWeightFuncFor(g),
}
// Calculate the total edge weight of the graph
// and degree weights for each node.
for _, n := range l.nodes {
u := n
var wOut float64
uid := u.ID()
to := g.From(uid)
for to.Next() {
wOut += l.weight(uid, to.Node().ID())
}
v := n
var wIn float64
vid := v.ID()
from := g.To(vid)
for from.Next() {
wIn += l.weight(from.Node().ID(), vid)
}
id := n.ID()
w := l.weight(id, id)
l.edgeWeightsOf[id] = directedWeights{out: w + wOut, in: w + wIn}
l.m += w + wOut
}
// Assign membership mappings.
for i, c := range communities {
for _, n := range c {
l.memberships[n.ID()] = i
}
}
return &l
}
// localMovingHeuristic performs the Louvain local moving heuristic until
// no further moves can be made. It returns a boolean indicating that the
// directedLocalMover has not made any improvement to the community structure and
// so the Louvain algorithm is done.
func (l *directedLocalMover) localMovingHeuristic(rnd func(int) int) (done bool) {
for {
l.shuffle(rnd)
for _, n := range l.nodes {
dQ, dst, src := l.deltaQ(n)
if dQ <= deltaQtol {
continue
}
l.move(dst, src)
}
if !l.moved {
return !l.changed
}
}
}
// shuffle performs a Fisher-Yates shuffle on the nodes held by the
// directedLocalMover using the random source rnd which should return an
// integer in the range [0,n).
func (l *directedLocalMover) shuffle(rnd func(n int) int) {
l.moved = false
for i := range l.nodes[:len(l.nodes)-1] {
j := i + rnd(len(l.nodes)-i)
l.nodes[i], l.nodes[j] = l.nodes[j], l.nodes[i]
}
}
// move moves the node at src to the community at dst.
func (l *directedLocalMover) move(dst int, src commIdx) {
l.moved = true
l.changed = true
srcComm := l.communities[src.community]
n := srcComm[src.node]
l.memberships[n.ID()] = dst
l.communities[dst] = append(l.communities[dst], n)
srcComm[src.node], srcComm[len(srcComm)-1] = srcComm[len(srcComm)-1], nil
l.communities[src.community] = srcComm[:len(srcComm)-1]
}
// deltaQ returns the highest gain in modularity attainable by moving
// n from its current community to another connected community and
// the index of the chosen destination. The index into the directedLocalMover's
// communities field is returned in src if n is in communities.
func (l *directedLocalMover) deltaQ(n graph.Node) (deltaQ float64, dst int, src commIdx) {
id := n.ID()
a_aa := l.weight(id, id)
k_a := l.edgeWeightsOf[id]
m := l.m
gamma := l.resolution
// Find communities connected to n.
connected := make(set.Ints[int])
// The following for loop is equivalent to:
//
// for _, v := range l.g.From(n) {
// connected.Add(l.memberships[v.ID()])
// }
// for _, v := range l.g.To(n) {
// connected.Add(l.memberships[v.ID()])
// }
//
// This is done to avoid two allocations.
for _, vid := range l.g.edgesFrom[id] {
connected.Add(l.memberships[vid])
}
for _, vid := range l.g.edgesTo[id] {
connected.Add(l.memberships[vid])
}
// Insert the node's own community.
connected.Add(l.memberships[id])
candidates := make([]int, 0, len(connected))
for i := range connected {
candidates = append(candidates, i)
}
slices.Sort(candidates)
// Calculate the highest modularity gain
// from moving into another community and
// keep the index of that community.
var dQremove float64
dQadd, dst, src := math.Inf(-1), -1, commIdx{-1, -1}
for _, i := range candidates {
c := l.communities[i]
var k_aC, sigma_totC directedWeights // C is a substitution for ^𝛼 or ^𝛽.
var removal bool
for j, u := range c {
uid := u.ID()
if uid == id {
if src.community != -1 {
panic("community: multiple sources")
}
src = commIdx{i, j}
removal = true
}
k_aC.in += l.weight(uid, id)
k_aC.out += l.weight(id, uid)
// sigma_totC could be kept for each community
// and updated for moves, changing the calculation
// of sigma_totC here from O(n_c) to O(1), but
// in practice the time savings do not appear
// to be compelling and do not make up for the
// increase in code complexity and space required.
w := l.edgeWeightsOf[uid]
sigma_totC.in += w.in
sigma_totC.out += w.out
}
// See louvain.tex for a derivation of these equations.
switch {
case removal:
// The community c was the current community,
// so calculate the change due to removal.
dQremove = (k_aC.in /*^𝛼*/ - a_aa) + (k_aC.out /*^𝛼*/ - a_aa) -
gamma*(k_a.in*(sigma_totC.out /*^𝛼*/ -k_a.out)+k_a.out*(sigma_totC.in /*^𝛼*/ -k_a.in))/m
default:
// Otherwise calculate the change due to an addition
// to c and retain if it is the current best.
dQ := k_aC.in /*^𝛽*/ + k_aC.out /*^𝛽*/ -
gamma*(k_a.in*sigma_totC.out /*^𝛽*/ +k_a.out*sigma_totC.in /*^𝛽*/)/m
if dQ > dQadd {
dQadd = dQ
dst = i
}
}
}
return (dQadd - dQremove) / m, dst, src
}