Files
gonum/dsp/transform/hilbert_example_test.go
2024-12-14 06:24:41 +10:30

57 lines
1.9 KiB
Go

// Copyright ©2024 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package transform
import (
"fmt"
"math/cmplx"
)
func ExampleHilbert_AnalyticSignal() {
// Samples is a set of real amplitudes that make up a signal.
samples := []float64{1, 0, 2, 0, 4, 0, 2, 0}
// Initialize a Hilbert transform and 'demodulate' to get the
// analytic signal.
// The result is the complex I/Q (In-Phase / Quadrature) demodulation
// of the input signal.
h := NewHilbert(len(samples))
iqSamples := h.AnalyticSignal(nil, samples)
// We can compute the instantaneous amplitude of the signal
// (or 'envelope') using absolute value. Analyzing the envelope
// is an easy way to measure changes in amplitude over time in a
// signal.
envelope := make([]float64, len(samples))
for ind, iq := range iqSamples {
envelope[ind] = cmplx.Abs(iq)
}
// We can also compute the instantaneous phase of each part of the
// signal using the 4-quadrant arc-tangent. With multiple samples,
// the instantaneous phase can be used to estimate instantaneous
// frequency of a signal.
phase := make([]float64, len(samples))
for ind, iq := range iqSamples {
phase[ind] = cmplx.Phase(iq)
}
for i, iq := range iqSamples {
fmt.Printf("ind=%d -> I=%.4f, Q=%.4f, envelope=%.4f, phase=%.4f\n",
i, real(iq), imag(iq), envelope[i], phase[i])
}
// Output:
//
// ind=0 -> I=1.0000, Q=0.0000, envelope=1.0000, phase=0.0000
// ind=1 -> I=-0.0000, Q=-0.8107, envelope=0.8107, phase=-1.5708
// ind=2 -> I=2.0000, Q=0.0000, envelope=2.0000, phase=0.0000
// ind=3 -> I=-0.0000, Q=-1.3107, envelope=1.3107, phase=-1.5708
// ind=4 -> I=4.0000, Q=0.0000, envelope=4.0000, phase=0.0000
// ind=5 -> I=0.0000, Q=1.3107, envelope=1.3107, phase=1.5708
// ind=6 -> I=2.0000, Q=0.0000, envelope=2.0000, phase=0.0000
// ind=7 -> I=0.0000, Q=0.8107, envelope=0.8107, phase=1.5708
}