mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	 5f0141ca4c
			
		
	
	5f0141ca4c
	
	
	
		
			
			Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
		
			
				
	
	
		
			601 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			601 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package cblas64
 | ||
| 
 | ||
| import (
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/gonum"
 | ||
| )
 | ||
| 
 | ||
| var cblas64 blas.Complex64 = gonum.Implementation{}
 | ||
| 
 | ||
| // Use sets the BLAS complex64 implementation to be used by subsequent BLAS calls.
 | ||
| // The default implementation is
 | ||
| // gonum.org/v1/gonum/blas/gonum.Implementation.
 | ||
| func Use(b blas.Complex64) {
 | ||
| 	cblas64 = b
 | ||
| }
 | ||
| 
 | ||
| // Implementation returns the current BLAS complex64 implementation.
 | ||
| //
 | ||
| // Implementation allows direct calls to the current the BLAS complex64 implementation
 | ||
| // giving finer control of parameters.
 | ||
| func Implementation() blas.Complex64 {
 | ||
| 	return cblas64
 | ||
| }
 | ||
| 
 | ||
| // Vector represents a vector with an associated element increment.
 | ||
| type Vector struct {
 | ||
| 	N    int
 | ||
| 	Inc  int
 | ||
| 	Data []complex64
 | ||
| }
 | ||
| 
 | ||
| // General represents a matrix using the conventional storage scheme.
 | ||
| type General struct {
 | ||
| 	Rows, Cols int
 | ||
| 	Stride     int
 | ||
| 	Data       []complex64
 | ||
| }
 | ||
| 
 | ||
| // Band represents a band matrix using the band storage scheme.
 | ||
| type Band struct {
 | ||
| 	Rows, Cols int
 | ||
| 	KL, KU     int
 | ||
| 	Stride     int
 | ||
| 	Data       []complex64
 | ||
| }
 | ||
| 
 | ||
| // Triangular represents a triangular matrix using the conventional storage scheme.
 | ||
| type Triangular struct {
 | ||
| 	N      int
 | ||
| 	Stride int
 | ||
| 	Data   []complex64
 | ||
| 	Uplo   blas.Uplo
 | ||
| 	Diag   blas.Diag
 | ||
| }
 | ||
| 
 | ||
| // TriangularBand represents a triangular matrix using the band storage scheme.
 | ||
| type TriangularBand struct {
 | ||
| 	N, K   int
 | ||
| 	Stride int
 | ||
| 	Data   []complex64
 | ||
| 	Uplo   blas.Uplo
 | ||
| 	Diag   blas.Diag
 | ||
| }
 | ||
| 
 | ||
| // TriangularPacked represents a triangular matrix using the packed storage scheme.
 | ||
| type TriangularPacked struct {
 | ||
| 	N    int
 | ||
| 	Data []complex64
 | ||
| 	Uplo blas.Uplo
 | ||
| 	Diag blas.Diag
 | ||
| }
 | ||
| 
 | ||
| // Symmetric represents a symmetric matrix using the conventional storage scheme.
 | ||
| type Symmetric struct {
 | ||
| 	N      int
 | ||
| 	Stride int
 | ||
| 	Data   []complex64
 | ||
| 	Uplo   blas.Uplo
 | ||
| }
 | ||
| 
 | ||
| // SymmetricBand represents a symmetric matrix using the band storage scheme.
 | ||
| type SymmetricBand struct {
 | ||
| 	N, K   int
 | ||
| 	Stride int
 | ||
| 	Data   []complex64
 | ||
| 	Uplo   blas.Uplo
 | ||
| }
 | ||
| 
 | ||
| // SymmetricPacked represents a symmetric matrix using the packed storage scheme.
 | ||
| type SymmetricPacked struct {
 | ||
| 	N    int
 | ||
| 	Data []complex64
 | ||
| 	Uplo blas.Uplo
 | ||
| }
 | ||
| 
 | ||
| // Hermitian represents an Hermitian matrix using the conventional storage scheme.
 | ||
| type Hermitian Symmetric
 | ||
| 
 | ||
| // HermitianBand represents an Hermitian matrix using the band storage scheme.
 | ||
| type HermitianBand SymmetricBand
 | ||
| 
 | ||
| // HermitianPacked represents an Hermitian matrix using the packed storage scheme.
 | ||
| type HermitianPacked SymmetricPacked
 | ||
| 
 | ||
| // Level 1
 | ||
| 
 | ||
| const (
 | ||
| 	negInc    = "cblas64: negative vector increment"
 | ||
| 	badLength = "cblas64: vector length mismatch"
 | ||
| )
 | ||
| 
 | ||
| // Dotu computes the dot product of the two vectors without
 | ||
| // complex conjugation:
 | ||
| //
 | ||
| //	xᵀ * y
 | ||
| //
 | ||
| // Dotu will panic if the lengths of x and y do not match.
 | ||
| func Dotu(x, y Vector) complex64 {
 | ||
| 	if x.N != y.N {
 | ||
| 		panic(badLength)
 | ||
| 	}
 | ||
| 	return cblas64.Cdotu(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Dotc computes the dot product of the two vectors with
 | ||
| // complex conjugation:
 | ||
| //
 | ||
| //	xᴴ * y.
 | ||
| //
 | ||
| // Dotc will panic if the lengths of x and y do not match.
 | ||
| func Dotc(x, y Vector) complex64 {
 | ||
| 	if x.N != y.N {
 | ||
| 		panic(badLength)
 | ||
| 	}
 | ||
| 	return cblas64.Cdotc(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Nrm2 computes the Euclidean norm of the vector x:
 | ||
| //
 | ||
| //	sqrt(\sum_i x[i] * x[i]).
 | ||
| //
 | ||
| // Nrm2 will panic if the vector increment is negative.
 | ||
| func Nrm2(x Vector) float32 {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	return cblas64.Scnrm2(x.N, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Asum computes the sum of magnitudes of the real and imaginary parts of
 | ||
| // elements of the vector x:
 | ||
| //
 | ||
| //	\sum_i (|Re x[i]| + |Im x[i]|).
 | ||
| //
 | ||
| // Asum will panic if the vector increment is negative.
 | ||
| func Asum(x Vector) float32 {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	return cblas64.Scasum(x.N, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Iamax returns the index of an element of x with the largest sum of
 | ||
| // magnitudes of the real and imaginary parts (|Re x[i]|+|Im x[i]|).
 | ||
| // If there are multiple such indices, the earliest is returned.
 | ||
| //
 | ||
| // Iamax returns -1 if n == 0.
 | ||
| //
 | ||
| // Iamax will panic if the vector increment is negative.
 | ||
| func Iamax(x Vector) int {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	return cblas64.Icamax(x.N, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Swap exchanges the elements of two vectors:
 | ||
| //
 | ||
| //	x[i], y[i] = y[i], x[i] for all i.
 | ||
| //
 | ||
| // Swap will panic if the lengths of x and y do not match.
 | ||
| func Swap(x, y Vector) {
 | ||
| 	if x.N != y.N {
 | ||
| 		panic(badLength)
 | ||
| 	}
 | ||
| 	cblas64.Cswap(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Copy copies the elements of x into the elements of y:
 | ||
| //
 | ||
| //	y[i] = x[i] for all i.
 | ||
| //
 | ||
| // Copy will panic if the lengths of x and y do not match.
 | ||
| func Copy(x, y Vector) {
 | ||
| 	if x.N != y.N {
 | ||
| 		panic(badLength)
 | ||
| 	}
 | ||
| 	cblas64.Ccopy(x.N, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Axpy computes
 | ||
| //
 | ||
| //	y = alpha * x + y,
 | ||
| //
 | ||
| // where x and y are vectors, and alpha is a scalar.
 | ||
| // Axpy will panic if the lengths of x and y do not match.
 | ||
| func Axpy(alpha complex64, x, y Vector) {
 | ||
| 	if x.N != y.N {
 | ||
| 		panic(badLength)
 | ||
| 	}
 | ||
| 	cblas64.Caxpy(x.N, alpha, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Scal computes
 | ||
| //
 | ||
| //	x = alpha * x,
 | ||
| //
 | ||
| // where x is a vector, and alpha is a scalar.
 | ||
| //
 | ||
| // Scal will panic if the vector increment is negative.
 | ||
| func Scal(alpha complex64, x Vector) {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	cblas64.Cscal(x.N, alpha, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Dscal computes
 | ||
| //
 | ||
| //	x = alpha * x,
 | ||
| //
 | ||
| // where x is a vector, and alpha is a real scalar.
 | ||
| //
 | ||
| // Dscal will panic if the vector increment is negative.
 | ||
| func Dscal(alpha float32, x Vector) {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	cblas64.Csscal(x.N, alpha, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Level 2
 | ||
| 
 | ||
| // Gemv computes
 | ||
| //
 | ||
| //	y = alpha * A * x + beta * y   if t == blas.NoTrans,
 | ||
| //	y = alpha * Aᵀ * x + beta * y  if t == blas.Trans,
 | ||
| //	y = alpha * Aᴴ * x + beta * y  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are
 | ||
| // scalars.
 | ||
| func Gemv(t blas.Transpose, alpha complex64, a General, x Vector, beta complex64, y Vector) {
 | ||
| 	cblas64.Cgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Gbmv computes
 | ||
| //
 | ||
| //	y = alpha * A * x + beta * y   if t == blas.NoTrans,
 | ||
| //	y = alpha * Aᵀ * x + beta * y  if t == blas.Trans,
 | ||
| //	y = alpha * Aᴴ * x + beta * y  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an m×n band matrix, x and y are vectors, and alpha and beta are
 | ||
| // scalars.
 | ||
| func Gbmv(t blas.Transpose, alpha complex64, a Band, x Vector, beta complex64, y Vector) {
 | ||
| 	cblas64.Cgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Trmv computes
 | ||
| //
 | ||
| //	x = A * x   if t == blas.NoTrans,
 | ||
| //	x = Aᵀ * x  if t == blas.Trans,
 | ||
| //	x = Aᴴ * x  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an n×n triangular matrix, and x is a vector.
 | ||
| func Trmv(t blas.Transpose, a Triangular, x Vector) {
 | ||
| 	cblas64.Ctrmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tbmv computes
 | ||
| //
 | ||
| //	x = A * x   if t == blas.NoTrans,
 | ||
| //	x = Aᵀ * x  if t == blas.Trans,
 | ||
| //	x = Aᴴ * x  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an n×n triangular band matrix, and x is a vector.
 | ||
| func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
 | ||
| 	cblas64.Ctbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tpmv computes
 | ||
| //
 | ||
| //	x = A * x   if t == blas.NoTrans,
 | ||
| //	x = Aᵀ * x  if t == blas.Trans,
 | ||
| //	x = Aᴴ * x  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an n×n triangular matrix in packed format, and x is a vector.
 | ||
| func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
 | ||
| 	cblas64.Ctpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Trsv solves
 | ||
| //
 | ||
| //	A * x = b   if t == blas.NoTrans,
 | ||
| //	Aᵀ * x = b  if t == blas.Trans,
 | ||
| //	Aᴴ * x = b  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an n×n triangular matrix and x is a vector.
 | ||
| //
 | ||
| // At entry to the function, x contains the values of b, and the result is
 | ||
| // stored in-place into x.
 | ||
| //
 | ||
| // No test for singularity or near-singularity is included in this
 | ||
| // routine. Such tests must be performed before calling this routine.
 | ||
| func Trsv(t blas.Transpose, a Triangular, x Vector) {
 | ||
| 	cblas64.Ctrsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tbsv solves
 | ||
| //
 | ||
| //	A * x = b   if t == blas.NoTrans,
 | ||
| //	Aᵀ * x = b  if t == blas.Trans,
 | ||
| //	Aᴴ * x = b  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an n×n triangular band matrix, and x is a vector.
 | ||
| //
 | ||
| // At entry to the function, x contains the values of b, and the result is
 | ||
| // stored in-place into x.
 | ||
| //
 | ||
| // No test for singularity or near-singularity is included in this
 | ||
| // routine. Such tests must be performed before calling this routine.
 | ||
| func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
 | ||
| 	cblas64.Ctbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tpsv solves
 | ||
| //
 | ||
| //	A * x = b   if t == blas.NoTrans,
 | ||
| //	Aᵀ * x = b  if t == blas.Trans,
 | ||
| //	Aᴴ * x = b  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where A is an n×n triangular matrix in packed format and x is a vector.
 | ||
| //
 | ||
| // At entry to the function, x contains the values of b, and the result is
 | ||
| // stored in-place into x.
 | ||
| //
 | ||
| // No test for singularity or near-singularity is included in this
 | ||
| // routine. Such tests must be performed before calling this routine.
 | ||
| func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
 | ||
| 	cblas64.Ctpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Hemv computes
 | ||
| //
 | ||
| //	y = alpha * A * x + beta * y,
 | ||
| //
 | ||
| // where A is an n×n Hermitian matrix, x and y are vectors, and alpha and
 | ||
| // beta are scalars.
 | ||
| func Hemv(alpha complex64, a Hermitian, x Vector, beta complex64, y Vector) {
 | ||
| 	cblas64.Chemv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Hbmv performs
 | ||
| //
 | ||
| //	y = alpha * A * x + beta * y,
 | ||
| //
 | ||
| // where A is an n×n Hermitian band matrix, x and y are vectors, and alpha
 | ||
| // and beta are scalars.
 | ||
| func Hbmv(alpha complex64, a HermitianBand, x Vector, beta complex64, y Vector) {
 | ||
| 	cblas64.Chbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Hpmv performs
 | ||
| //
 | ||
| //	y = alpha * A * x + beta * y,
 | ||
| //
 | ||
| // where A is an n×n Hermitian matrix in packed format, x and y are vectors,
 | ||
| // and alpha and beta are scalars.
 | ||
| func Hpmv(alpha complex64, a HermitianPacked, x Vector, beta complex64, y Vector) {
 | ||
| 	cblas64.Chpmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Geru performs a rank-1 update
 | ||
| //
 | ||
| //	A += alpha * x * yᵀ,
 | ||
| //
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
 | ||
| func Geru(alpha complex64, x, y Vector, a General) {
 | ||
| 	cblas64.Cgeru(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Gerc performs a rank-1 update
 | ||
| //
 | ||
| //	A += alpha * x * yᴴ,
 | ||
| //
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
 | ||
| func Gerc(alpha complex64, x, y Vector, a General) {
 | ||
| 	cblas64.Cgerc(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Her performs a rank-1 update
 | ||
| //
 | ||
| //	A += alpha * x * yᵀ,
 | ||
| //
 | ||
| // where A is an m×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
 | ||
| func Her(alpha float32, x Vector, a Hermitian) {
 | ||
| 	cblas64.Cher(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Hpr performs a rank-1 update
 | ||
| //
 | ||
| //	A += alpha * x * xᴴ,
 | ||
| //
 | ||
| // where A is an n×n Hermitian matrix in packed format, x is a vector, and
 | ||
| // alpha is a scalar.
 | ||
| func Hpr(alpha float32, x Vector, a HermitianPacked) {
 | ||
| 	cblas64.Chpr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
 | ||
| }
 | ||
| 
 | ||
| // Her2 performs a rank-2 update
 | ||
| //
 | ||
| //	A += alpha * x * yᴴ + conj(alpha) * y * xᴴ,
 | ||
| //
 | ||
| // where A is an n×n Hermitian matrix, x and y are vectors, and alpha is a scalar.
 | ||
| func Her2(alpha complex64, x, y Vector, a Hermitian) {
 | ||
| 	cblas64.Cher2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Hpr2 performs a rank-2 update
 | ||
| //
 | ||
| //	A += alpha * x * yᴴ + conj(alpha) * y * xᴴ,
 | ||
| //
 | ||
| // where A is an n×n Hermitian matrix in packed format, x and y are vectors,
 | ||
| // and alpha is a scalar.
 | ||
| func Hpr2(alpha complex64, x, y Vector, a HermitianPacked) {
 | ||
| 	cblas64.Chpr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
 | ||
| }
 | ||
| 
 | ||
| // Level 3
 | ||
| 
 | ||
| // Gemm computes
 | ||
| //
 | ||
| //	C = alpha * A * B + beta * C,
 | ||
| //
 | ||
| // where A, B, and C are dense matrices, and alpha and beta are scalars.
 | ||
| // tA and tB specify whether A or B are transposed or conjugated.
 | ||
| func Gemm(tA, tB blas.Transpose, alpha complex64, a, b General, beta complex64, c General) {
 | ||
| 	var m, n, k int
 | ||
| 	if tA == blas.NoTrans {
 | ||
| 		m, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		m, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	if tB == blas.NoTrans {
 | ||
| 		n = b.Cols
 | ||
| 	} else {
 | ||
| 		n = b.Rows
 | ||
| 	}
 | ||
| 	cblas64.Cgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Symm performs
 | ||
| //
 | ||
| //	C = alpha * A * B + beta * C  if s == blas.Left,
 | ||
| //	C = alpha * B * A + beta * C  if s == blas.Right,
 | ||
| //
 | ||
| // where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
 | ||
| // alpha and beta are scalars.
 | ||
| func Symm(s blas.Side, alpha complex64, a Symmetric, b General, beta complex64, c General) {
 | ||
| 	var m, n int
 | ||
| 	if s == blas.Left {
 | ||
| 		m, n = a.N, b.Cols
 | ||
| 	} else {
 | ||
| 		m, n = b.Rows, a.N
 | ||
| 	}
 | ||
| 	cblas64.Csymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Syrk performs a symmetric rank-k update
 | ||
| //
 | ||
| //	C = alpha * A * Aᵀ + beta * C  if t == blas.NoTrans,
 | ||
| //	C = alpha * Aᵀ * A + beta * C  if t == blas.Trans,
 | ||
| //
 | ||
| // where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans
 | ||
| // and a k×n matrix otherwise, and alpha and beta are scalars.
 | ||
| func Syrk(t blas.Transpose, alpha complex64, a General, beta complex64, c Symmetric) {
 | ||
| 	var n, k int
 | ||
| 	if t == blas.NoTrans {
 | ||
| 		n, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		n, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	cblas64.Csyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Syr2k performs a symmetric rank-2k update
 | ||
| //
 | ||
| //	C = alpha * A * Bᵀ + alpha * B * Aᵀ + beta * C  if t == blas.NoTrans,
 | ||
| //	C = alpha * Aᵀ * B + alpha * Bᵀ * A + beta * C  if t == blas.Trans,
 | ||
| //
 | ||
| // where C is an n×n symmetric matrix, A and B are n×k matrices if
 | ||
| // t == blas.NoTrans and k×n otherwise, and alpha and beta are scalars.
 | ||
| func Syr2k(t blas.Transpose, alpha complex64, a, b General, beta complex64, c Symmetric) {
 | ||
| 	var n, k int
 | ||
| 	if t == blas.NoTrans {
 | ||
| 		n, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		n, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	cblas64.Csyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Trmm performs
 | ||
| //
 | ||
| //	B = alpha * A * B   if tA == blas.NoTrans and s == blas.Left,
 | ||
| //	B = alpha * Aᵀ * B  if tA == blas.Trans and s == blas.Left,
 | ||
| //	B = alpha * Aᴴ * B  if tA == blas.ConjTrans and s == blas.Left,
 | ||
| //	B = alpha * B * A   if tA == blas.NoTrans and s == blas.Right,
 | ||
| //	B = alpha * B * Aᵀ  if tA == blas.Trans and s == blas.Right,
 | ||
| //	B = alpha * B * Aᴴ  if tA == blas.ConjTrans and s == blas.Right,
 | ||
| //
 | ||
| // where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
 | ||
| // a scalar.
 | ||
| func Trmm(s blas.Side, tA blas.Transpose, alpha complex64, a Triangular, b General) {
 | ||
| 	cblas64.Ctrmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Trsm solves
 | ||
| //
 | ||
| //	A * X = alpha * B   if tA == blas.NoTrans and s == blas.Left,
 | ||
| //	Aᵀ * X = alpha * B  if tA == blas.Trans and s == blas.Left,
 | ||
| //	Aᴴ * X = alpha * B  if tA == blas.ConjTrans and s == blas.Left,
 | ||
| //	X * A = alpha * B   if tA == blas.NoTrans and s == blas.Right,
 | ||
| //	X * Aᵀ = alpha * B  if tA == blas.Trans and s == blas.Right,
 | ||
| //	X * Aᴴ = alpha * B  if tA == blas.ConjTrans and s == blas.Right,
 | ||
| //
 | ||
| // where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
 | ||
| // alpha is a scalar.
 | ||
| //
 | ||
| // At entry to the function, b contains the values of B, and the result is
 | ||
| // stored in-place into b.
 | ||
| //
 | ||
| // No check is made that A is invertible.
 | ||
| func Trsm(s blas.Side, tA blas.Transpose, alpha complex64, a Triangular, b General) {
 | ||
| 	cblas64.Ctrsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Hemm performs
 | ||
| //
 | ||
| //	C = alpha * A * B + beta * C  if s == blas.Left,
 | ||
| //	C = alpha * B * A + beta * C  if s == blas.Right,
 | ||
| //
 | ||
| // where A is an n×n or m×m Hermitian matrix, B and C are m×n matrices, and
 | ||
| // alpha and beta are scalars.
 | ||
| func Hemm(s blas.Side, alpha complex64, a Hermitian, b General, beta complex64, c General) {
 | ||
| 	var m, n int
 | ||
| 	if s == blas.Left {
 | ||
| 		m, n = a.N, b.Cols
 | ||
| 	} else {
 | ||
| 		m, n = b.Rows, a.N
 | ||
| 	}
 | ||
| 	cblas64.Chemm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Herk performs the Hermitian rank-k update
 | ||
| //
 | ||
| //	C = alpha * A * Aᴴ + beta*C  if t == blas.NoTrans,
 | ||
| //	C = alpha * Aᴴ * A + beta*C  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where C is an n×n Hermitian matrix, A is an n×k matrix if t == blas.NoTrans
 | ||
| // and a k×n matrix otherwise, and alpha and beta are scalars.
 | ||
| func Herk(t blas.Transpose, alpha float32, a General, beta float32, c Hermitian) {
 | ||
| 	var n, k int
 | ||
| 	if t == blas.NoTrans {
 | ||
| 		n, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		n, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	cblas64.Cherk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Her2k performs the Hermitian rank-2k update
 | ||
| //
 | ||
| //	C = alpha * A * Bᴴ + conj(alpha) * B * Aᴴ + beta * C  if t == blas.NoTrans,
 | ||
| //	C = alpha * Aᴴ * B + conj(alpha) * Bᴴ * A + beta * C  if t == blas.ConjTrans,
 | ||
| //
 | ||
| // where C is an n×n Hermitian matrix, A and B are n×k matrices if t == NoTrans
 | ||
| // and k×n matrices otherwise, and alpha and beta are scalars.
 | ||
| func Her2k(t blas.Transpose, alpha complex64, a, b General, beta float32, c Hermitian) {
 | ||
| 	var n, k int
 | ||
| 	if t == blas.NoTrans {
 | ||
| 		n, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		n, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	cblas64.Cher2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 |