mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00

Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
143 lines
4.2 KiB
Go
143 lines
4.2 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package stat
|
|
|
|
import (
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/floats"
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
// CovarianceMatrix calculates the covariance matrix (also known as the
|
|
// variance-covariance matrix) calculated from a matrix of data, x, using
|
|
// a two-pass algorithm. The result is stored in dst.
|
|
//
|
|
// If weights is not nil the weighted covariance of x is calculated. weights
|
|
// must have length equal to the number of rows in input data matrix and
|
|
// must not contain negative elements.
|
|
// The dst matrix must either be empty or have the same number of
|
|
// columns as the input data matrix.
|
|
func CovarianceMatrix(dst *mat.SymDense, x mat.Matrix, weights []float64) {
|
|
// This is the matrix version of the two-pass algorithm. It doesn't use the
|
|
// additional floating point error correction that the Covariance function uses
|
|
// to reduce the impact of rounding during centering.
|
|
|
|
r, c := x.Dims()
|
|
|
|
if dst.IsEmpty() {
|
|
*dst = *(dst.GrowSym(c).(*mat.SymDense))
|
|
} else if n := dst.SymmetricDim(); n != c {
|
|
panic(mat.ErrShape)
|
|
}
|
|
|
|
var xt mat.Dense
|
|
xt.CloneFrom(x.T())
|
|
// Subtract the mean of each of the columns.
|
|
for i := 0; i < c; i++ {
|
|
v := xt.RawRowView(i)
|
|
// This will panic with ErrShape if len(weights) != len(v), so
|
|
// we don't have to check the size later.
|
|
mean := Mean(v, weights)
|
|
floats.AddConst(-mean, v)
|
|
}
|
|
|
|
if weights == nil {
|
|
// Calculate the normalization factor
|
|
// scaled by the sample size.
|
|
dst.SymOuterK(1/(float64(r)-1), &xt)
|
|
return
|
|
}
|
|
|
|
// Multiply by the sqrt of the weights, so that multiplication is symmetric.
|
|
sqrtwts := make([]float64, r)
|
|
for i, w := range weights {
|
|
if w < 0 {
|
|
panic("stat: negative covariance matrix weights")
|
|
}
|
|
sqrtwts[i] = math.Sqrt(w)
|
|
}
|
|
// Weight the rows.
|
|
for i := 0; i < c; i++ {
|
|
v := xt.RawRowView(i)
|
|
floats.Mul(v, sqrtwts)
|
|
}
|
|
|
|
// Calculate the normalization factor
|
|
// scaled by the weighted sample size.
|
|
dst.SymOuterK(1/(floats.Sum(weights)-1), &xt)
|
|
}
|
|
|
|
// CorrelationMatrix returns the correlation matrix calculated from a matrix
|
|
// of data, x, using a two-pass algorithm. The result is stored in dst.
|
|
//
|
|
// If weights is not nil the weighted correlation of x is calculated. weights
|
|
// must have length equal to the number of rows in input data matrix and
|
|
// must not contain negative elements.
|
|
// The dst matrix must either be empty or have the same number of
|
|
// columns as the input data matrix.
|
|
func CorrelationMatrix(dst *mat.SymDense, x mat.Matrix, weights []float64) {
|
|
// This will panic if the sizes don't match, or if weights is the wrong size.
|
|
CovarianceMatrix(dst, x, weights)
|
|
covToCorr(dst)
|
|
}
|
|
|
|
// covToCorr converts a covariance matrix to a correlation matrix.
|
|
func covToCorr(c *mat.SymDense) {
|
|
r := c.SymmetricDim()
|
|
|
|
s := make([]float64, r)
|
|
for i := 0; i < r; i++ {
|
|
s[i] = 1 / math.Sqrt(c.At(i, i))
|
|
}
|
|
for i, sx := range s {
|
|
// Ensure that the diagonal has exactly ones.
|
|
c.SetSym(i, i, 1)
|
|
for j := i + 1; j < r; j++ {
|
|
v := c.At(i, j)
|
|
c.SetSym(i, j, v*sx*s[j])
|
|
}
|
|
}
|
|
}
|
|
|
|
// corrToCov converts a correlation matrix to a covariance matrix.
|
|
// The input sigma should be vector of standard deviations corresponding
|
|
// to the covariance. It will panic if len(sigma) is not equal to the
|
|
// number of rows in the correlation matrix.
|
|
func corrToCov(c *mat.SymDense, sigma []float64) {
|
|
r, _ := c.Dims()
|
|
|
|
if r != len(sigma) {
|
|
panic(mat.ErrShape)
|
|
}
|
|
for i, sx := range sigma {
|
|
// Ensure that the diagonal has exactly sigma squared.
|
|
c.SetSym(i, i, sx*sx)
|
|
for j := i + 1; j < r; j++ {
|
|
v := c.At(i, j)
|
|
c.SetSym(i, j, v*sx*sigma[j])
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mahalanobis computes the Mahalanobis distance
|
|
//
|
|
// D = sqrt((x-y)ᵀ * Σ^-1 * (x-y))
|
|
//
|
|
// between the column vectors x and y given the cholesky decomposition of Σ.
|
|
// Mahalanobis returns NaN if the linear solve fails.
|
|
//
|
|
// See https://en.wikipedia.org/wiki/Mahalanobis_distance for more information.
|
|
func Mahalanobis(x, y mat.Vector, chol *mat.Cholesky) float64 {
|
|
var diff mat.VecDense
|
|
diff.SubVec(x, y)
|
|
var tmp mat.VecDense
|
|
err := chol.SolveVecTo(&tmp, &diff)
|
|
if err != nil {
|
|
return math.NaN()
|
|
}
|
|
return math.Sqrt(mat.Dot(&tmp, &diff))
|
|
}
|