mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 07:37:03 +08:00
41 lines
1.3 KiB
Go
41 lines
1.3 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package sampleuv_test
|
|
|
|
import (
|
|
"gonum.org/v1/gonum/stat/distuv"
|
|
"gonum.org/v1/gonum/stat/sampleuv"
|
|
)
|
|
|
|
type ProposalDist struct {
|
|
Sigma float64
|
|
}
|
|
|
|
func (p ProposalDist) ConditionalRand(y float64) float64 {
|
|
return distuv.Normal{Mu: y, Sigma: p.Sigma}.Rand()
|
|
}
|
|
|
|
func (p ProposalDist) ConditionalLogProb(x, y float64) float64 {
|
|
return distuv.Normal{Mu: y, Sigma: p.Sigma}.LogProb(x)
|
|
}
|
|
|
|
func ExampleMetropolisHastings_burnin() {
|
|
n := 1000 // The number of samples to generate.
|
|
burnin := 50 // Number of samples to ignore at the start.
|
|
var initial float64
|
|
// target is the distribution from which we would like to sample.
|
|
target := distuv.Weibull{K: 5, Lambda: 0.5}
|
|
// proposal is the proposal distribution. Here, we are choosing
|
|
// a tight Gaussian distribution around the current location. In
|
|
// typical problems, if Sigma is too small, it takes a lot of samples
|
|
// to move around the distribution. If Sigma is too large, it can be hard
|
|
// to find acceptable samples.
|
|
proposal := ProposalDist{Sigma: 0.2}
|
|
|
|
samples := make([]float64, n)
|
|
mh := sampleuv.MetropolisHastings{Initial: initial, Target: target, Proposal: proposal, BurnIn: burnin}
|
|
mh.Sample(samples)
|
|
}
|