mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
210 lines
6.9 KiB
Go
210 lines
6.9 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package stat
|
|
|
|
import (
|
|
"math"
|
|
"testing"
|
|
|
|
"gonum.org/v1/gonum/floats/scalar"
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
func TestPrincipalComponents(t *testing.T) {
|
|
// Threshold for detecting zero variances.
|
|
const epsilon = 1e-15
|
|
tests:
|
|
for i, test := range []struct {
|
|
data mat.Matrix
|
|
weights []float64
|
|
wantVecs *mat.Dense
|
|
wantVars []float64
|
|
epsilon float64
|
|
}{
|
|
// Test results verified using R.
|
|
{
|
|
data: mat.NewDense(3, 3, []float64{
|
|
1, 2, 3,
|
|
4, 5, 6,
|
|
7, 8, 9,
|
|
}),
|
|
wantVecs: mat.NewDense(3, 3, []float64{
|
|
0.5773502691896258, 0.8164965809277261, 0,
|
|
0.577350269189626, -0.4082482904638632, -0.7071067811865476,
|
|
0.5773502691896258, -0.4082482904638631, 0.7071067811865475,
|
|
}),
|
|
wantVars: []float64{27, 0, 0},
|
|
epsilon: 1e-12,
|
|
},
|
|
{ // Truncated iris data.
|
|
data: mat.NewDense(10, 4, []float64{
|
|
5.1, 3.5, 1.4, 0.2,
|
|
4.9, 3.0, 1.4, 0.2,
|
|
4.7, 3.2, 1.3, 0.2,
|
|
4.6, 3.1, 1.5, 0.2,
|
|
5.0, 3.6, 1.4, 0.2,
|
|
5.4, 3.9, 1.7, 0.4,
|
|
4.6, 3.4, 1.4, 0.3,
|
|
5.0, 3.4, 1.5, 0.2,
|
|
4.4, 2.9, 1.4, 0.2,
|
|
4.9, 3.1, 1.5, 0.1,
|
|
}),
|
|
wantVecs: mat.NewDense(4, 4, []float64{
|
|
-0.6681110197952723, 0.706476485753953, 0.14026590216895127, 0.18666578956412122,
|
|
-0.7166344774801547, -0.6427036135482663, 0.13565028590525394, -0.23444848208629923,
|
|
-0.16441127516630702, 0.11898477441068217, -0.9136367900709544, -0.35224901970831735,
|
|
-0.11415613655453066, -0.27141419208874273, -0.3566402843922649, 0.8866286823515032,
|
|
}),
|
|
wantVars: []float64{0.1665786313282786, 0.02065509475412993, 0.007944620317765855, 0.0019327647109368329},
|
|
epsilon: 1e-12,
|
|
},
|
|
{ // Truncated iris data to form wide matrix.
|
|
data: mat.NewDense(3, 4, []float64{
|
|
5.1, 3.5, 1.4, 0.2,
|
|
4.9, 3.0, 1.4, 0.2,
|
|
4.7, 3.2, 1.3, 0.2,
|
|
}),
|
|
wantVecs: mat.NewDense(4, 3, []float64{
|
|
-0.5705187254552365, -0.7505979435049239, 0.08084520834544455,
|
|
-0.8166537769529318, 0.5615147645527523, -0.032338083338177705,
|
|
-0.08709186238359454, -0.3482870890450082, -0.22636658336724505,
|
|
0, 0, -0.9701425001453315,
|
|
}),
|
|
wantVars: []float64{0.0844692361537822, 0.022197430512884326, 0},
|
|
epsilon: 1e-12,
|
|
},
|
|
{ // Truncated iris data transposed to check for operation on fat input.
|
|
data: mat.NewDense(10, 4, []float64{
|
|
5.1, 3.5, 1.4, 0.2,
|
|
4.9, 3.0, 1.4, 0.2,
|
|
4.7, 3.2, 1.3, 0.2,
|
|
4.6, 3.1, 1.5, 0.2,
|
|
5.0, 3.6, 1.4, 0.2,
|
|
5.4, 3.9, 1.7, 0.4,
|
|
4.6, 3.4, 1.4, 0.3,
|
|
5.0, 3.4, 1.5, 0.2,
|
|
4.4, 2.9, 1.4, 0.2,
|
|
4.9, 3.1, 1.5, 0.1,
|
|
}).T(),
|
|
wantVecs: mat.NewDense(10, 4, []float64{
|
|
-0.3366602459946619, -0.1373634006401213, 0.3465102523547623, -0.10290179303893479,
|
|
-0.31381852053861975, 0.5197145790632827, 0.5567296129086686, -0.15923062170153618,
|
|
-0.30857197637565165, -0.07670930360819002, 0.36159923003337235, 0.3342301027853355,
|
|
-0.29527124351656137, 0.16885455995353074, -0.5056204762881208, 0.32580913261444344,
|
|
-0.3327611073694004, -0.39365834489416474, 0.04900050959307464, 0.46812879383236555,
|
|
-0.34445484362044815, -0.2985206914561878, -0.1009714701361799, -0.16803618186050803,
|
|
-0.2986246350957691, -0.4222037823717799, -0.11838613462182519, -0.580283530375069,
|
|
-0.325911246223126, 0.024366468758217238, -0.12082035131864265, 0.16756027181337868,
|
|
-0.2814284432361538, 0.240812316260054, -0.24061437569068145, -0.365034616264623,
|
|
-0.31906138507685167, 0.4423912824105986, -0.2906412122303604, 0.027551046870337714,
|
|
}),
|
|
wantVars: []float64{41.8851906634233, 0.07762619213464989, 0.010516477775373585, 0},
|
|
epsilon: 1e-12,
|
|
},
|
|
{ // Truncated iris data unitary weights.
|
|
data: mat.NewDense(10, 4, []float64{
|
|
5.1, 3.5, 1.4, 0.2,
|
|
4.9, 3.0, 1.4, 0.2,
|
|
4.7, 3.2, 1.3, 0.2,
|
|
4.6, 3.1, 1.5, 0.2,
|
|
5.0, 3.6, 1.4, 0.2,
|
|
5.4, 3.9, 1.7, 0.4,
|
|
4.6, 3.4, 1.4, 0.3,
|
|
5.0, 3.4, 1.5, 0.2,
|
|
4.4, 2.9, 1.4, 0.2,
|
|
4.9, 3.1, 1.5, 0.1,
|
|
}),
|
|
weights: []float64{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
|
|
wantVecs: mat.NewDense(4, 4, []float64{
|
|
-0.6681110197952723, 0.706476485753953, 0.14026590216895127, 0.18666578956412122,
|
|
-0.7166344774801547, -0.6427036135482663, 0.13565028590525394, -0.23444848208629923,
|
|
-0.16441127516630702, 0.11898477441068217, -0.9136367900709544, -0.35224901970831735,
|
|
-0.11415613655453066, -0.27141419208874273, -0.3566402843922649, 0.8866286823515032,
|
|
}),
|
|
wantVars: []float64{0.1665786313282786, 0.02065509475412993, 0.007944620317765855, 0.0019327647109368329},
|
|
epsilon: 1e-12,
|
|
},
|
|
{ // Truncated iris data non-unitary weights.
|
|
data: mat.NewDense(10, 4, []float64{
|
|
5.1, 3.5, 1.4, 0.2,
|
|
4.9, 3.0, 1.4, 0.2,
|
|
4.7, 3.2, 1.3, 0.2,
|
|
4.6, 3.1, 1.5, 0.2,
|
|
5.0, 3.6, 1.4, 0.2,
|
|
5.4, 3.9, 1.7, 0.4,
|
|
4.6, 3.4, 1.4, 0.3,
|
|
5.0, 3.4, 1.5, 0.2,
|
|
4.4, 2.9, 1.4, 0.2,
|
|
4.9, 3.1, 1.5, 0.1,
|
|
}),
|
|
weights: []float64{2, 3, 1, 1, 1, 1, 1, 1, 1, 2},
|
|
wantVecs: mat.NewDense(4, 4, []float64{
|
|
-0.618936145422414, 0.763069301531647, 0.124857741232537, 0.138035623677211,
|
|
-0.763958271606519, -0.603881770702898, 0.118267155321333, -0.194184052457746,
|
|
-0.143552119754944, 0.090014599564871, -0.942209377020044, -0.289018426115945,
|
|
-0.112599271966947, -0.212012782487076, -0.287515067921680, 0.927203898682805,
|
|
}),
|
|
wantVars: []float64{0.129621985550623, 0.022417487771598, 0.006454461065715, 0.002495076601075},
|
|
epsilon: 1e-12,
|
|
},
|
|
} {
|
|
var pc PC
|
|
vecs := &mat.Dense{}
|
|
var vars []float64
|
|
for j := 0; j < 2; j++ {
|
|
ok := pc.PrincipalComponents(test.data, test.weights)
|
|
pc.VectorsTo(vecs)
|
|
vars = pc.VarsTo(vars)
|
|
if !ok {
|
|
t.Errorf("unexpected SVD failure for test %d use %d", i, j)
|
|
continue tests
|
|
}
|
|
|
|
// Find the number of non-zero variances to handle
|
|
// non-uniqueness in SVD result (issue #21).
|
|
nnz := len(vars)
|
|
for k, v := range vars {
|
|
if math.Abs(v) < epsilon {
|
|
nnz = k
|
|
break
|
|
}
|
|
}
|
|
r, c := vecs.Dims()
|
|
if !mat.EqualApprox(vecs.Slice(0, r, 0, nnz), test.wantVecs.Slice(0, r, 0, nnz), test.epsilon) {
|
|
t.Errorf("%d use %d: unexpected PCA result got:\n%v\nwant:\n%v",
|
|
i, j, mat.Formatted(vecs), mat.Formatted(test.wantVecs))
|
|
}
|
|
if !approxEqual(vars, test.wantVars, test.epsilon) {
|
|
t.Errorf("%d use %d: unexpected variance result got:%v, want:%v",
|
|
i, j, vars, test.wantVars)
|
|
}
|
|
|
|
// Check that the set of principal vectors is
|
|
// orthonormal by comparing Vᵀ*V to the identity matrix.
|
|
I := mat.NewDiagDense(c, nil)
|
|
for k := 0; k < c; k++ {
|
|
I.SetDiag(k, 1)
|
|
}
|
|
var vv mat.Dense
|
|
vv.Mul(vecs.T(), vecs)
|
|
if !mat.EqualApprox(&vv, I, test.epsilon) {
|
|
t.Errorf("%d use %d: vectors not orthonormal\n%v", i, j, mat.Formatted(I))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func approxEqual(a, b []float64, epsilon float64) bool {
|
|
if len(a) != len(b) {
|
|
return false
|
|
}
|
|
for i, v := range a {
|
|
if !scalar.EqualWithinAbsOrRel(v, b[i], epsilon, epsilon) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|