Files
gonum/stat/pca_cca.go
Brendan Tracey 5d5638e674 stat/*: Update functions to take empty matrices (#1102)
* stat/*: Update functions to take empty matrices

Change TorgersonScaling to require an empty matrix. Users who want to reuse data can call Reset now that it is exposed. This function is different than others because the return size is unknown. Forcing the input matrix to be empty makes it clear that the dst matrix will be dynamically resized

Fixes #1081.
2019-10-09 23:20:26 +01:00

325 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"errors"
"math"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// PC is a type for computing and extracting the principal components of a
// matrix. The results of the principal components analysis are only valid
// if the call to PrincipalComponents was successful.
type PC struct {
n, d int
weights []float64
svd *mat.SVD
ok bool
}
// PrincipalComponents performs a weighted principal components analysis on the
// matrix of the input data which is represented as an n×d matrix a where each
// row is an observation and each column is a variable.
//
// PrincipalComponents centers the variables but does not scale the variance.
//
// The weights slice is used to weight the observations. If weights is nil, each
// weight is considered to have a value of one, otherwise the length of weights
// must match the number of observations or PrincipalComponents will panic.
//
// PrincipalComponents returns whether the analysis was successful.
func (c *PC) PrincipalComponents(a mat.Matrix, weights []float64) (ok bool) {
c.n, c.d = a.Dims()
if weights != nil && len(weights) != c.n {
panic("stat: len(weights) != observations")
}
c.svd, c.ok = svdFactorizeCentered(c.svd, a, weights)
if c.ok {
c.weights = append(c.weights[:0], weights...)
}
return c.ok
}
// VectorsTo returns the component direction vectors of a principal components
// analysis. The vectors are returned in the columns of a d×min(n, d) matrix.
//
// If dst is empty, VectorsTo will resize dst to be d×min(n, d). When dst is
// non-empty, VectorsTo will panic if dst is not d×min(n, d). VectorsTo will also
// panic if the receiver does not contain a successful PC.
func (c *PC) VectorsTo(dst *mat.Dense) {
if !c.ok {
panic("stat: use of unsuccessful principal components analysis")
}
if dst.IsEmpty() {
dst.ReuseAs(c.d, min(c.n, c.d))
} else {
if d, n := dst.Dims(); d != c.d || n != min(c.n, c.d) {
panic(mat.ErrShape)
}
}
c.svd.VTo(dst)
}
// VarsTo returns the column variances of the principal component scores,
// b * vecs, where b is a matrix with centered columns. Variances are returned
// in descending order.
// If dst is not nil it is used to store the variances and returned.
// Vars will panic if the receiver has not successfully performed a principal
// components analysis or dst is not nil and the length of dst is not min(n, d).
func (c *PC) VarsTo(dst []float64) []float64 {
if !c.ok {
panic("stat: use of unsuccessful principal components analysis")
}
if dst != nil && len(dst) != min(c.n, c.d) {
panic("stat: length of slice does not match analysis")
}
dst = c.svd.Values(dst)
var f float64
if c.weights == nil {
f = 1 / float64(c.n-1)
} else {
f = 1 / (floats.Sum(c.weights) - 1)
}
for i, v := range dst {
dst[i] = f * v * v
}
return dst
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
// CC is a type for computing the canonical correlations of a pair of matrices.
// The results of the canonical correlation analysis are only valid
// if the call to CanonicalCorrelations was successful.
type CC struct {
// n is the number of observations used to
// construct the canonical correlations.
n int
// xd and yd are used for size checks.
xd, yd int
x, y, c *mat.SVD
ok bool
}
// CanonicalCorrelations performs a canonical correlation analysis of the
// input data x and y, columns of which should be interpretable as two sets
// of measurements on the same observations (rows). These observations are
// optionally weighted by weights. The result of the analysis is stored in
// the receiver if the analysis is successful.
//
// Canonical correlation analysis finds associations between two sets of
// variables on the same observations by finding linear combinations of the two
// sphered datasets that maximize the correlation between them.
//
// Some notation: let Xc and Yc denote the centered input data matrices x
// and y (column means subtracted from each column), let Sx and Sy denote the
// sample covariance matrices within x and y respectively, and let Sxy denote
// the covariance matrix between x and y. The sphered data can then be expressed
// as Xc * Sx^{-1/2} and Yc * Sy^{-1/2} respectively, and the correlation matrix
// between the sphered data is called the canonical correlation matrix,
// Sx^{-1/2} * Sxy * Sy^{-1/2}. In cases where S^{-1/2} is ambiguous for some
// covariance matrix S, S^{-1/2} is taken to be E * D^{-1/2} * Eᵀ where S can
// be eigendecomposed as S = E * D * Eᵀ.
//
// The canonical correlations are the correlations between the corresponding
// pairs of canonical variables and can be obtained with c.Corrs(). Canonical
// variables can be obtained by projecting the sphered data into the left and
// right eigenvectors of the canonical correlation matrix, and these
// eigenvectors can be obtained with c.Left(m, true) and c.Right(m, true)
// respectively. The canonical variables can also be obtained directly from the
// centered raw data by using the back-transformed eigenvectors which can be
// obtained with c.Left(m, false) and c.Right(m, false) respectively.
//
// The first pair of left and right eigenvectors of the canonical correlation
// matrix can be interpreted as directions into which the respective sphered
// data can be projected such that the correlation between the two projections
// is maximized. The second pair and onwards solve the same optimization but
// under the constraint that they are uncorrelated (orthogonal in sphered space)
// to previous projections.
//
// CanonicalCorrelations will panic if the inputs x and y do not have the same
// number of rows.
//
// The slice weights is used to weight the observations. If weights is nil, each
// weight is considered to have a value of one, otherwise the length of weights
// must match the number of observations (rows of both x and y) or
// CanonicalCorrelations will panic.
//
// More details can be found at
// https://en.wikipedia.org/wiki/Canonical_correlation
// or in Chapter 3 of
// Koch, Inge. Analysis of multivariate and high-dimensional data.
// Vol. 32. Cambridge University Press, 2013. ISBN: 9780521887939
func (c *CC) CanonicalCorrelations(x, y mat.Matrix, weights []float64) error {
var yn int
c.n, c.xd = x.Dims()
yn, c.yd = y.Dims()
if c.n != yn {
panic("stat: unequal number of observations")
}
if weights != nil && len(weights) != c.n {
panic("stat: len(weights) != observations")
}
// Center and factorize x and y.
c.x, c.ok = svdFactorizeCentered(c.x, x, weights)
if !c.ok {
return errors.New("stat: failed to factorize x")
}
c.y, c.ok = svdFactorizeCentered(c.y, y, weights)
if !c.ok {
return errors.New("stat: failed to factorize y")
}
var xu, xv, yu, yv mat.Dense
c.x.UTo(&xu)
c.x.VTo(&xv)
c.y.UTo(&yu)
c.y.VTo(&yv)
// Calculate and factorise the canonical correlation matrix.
var ccor mat.Dense
ccor.Product(&xv, xu.T(), &yu, yv.T())
if c.c == nil {
c.c = &mat.SVD{}
}
c.ok = c.c.Factorize(&ccor, mat.SVDThin)
if !c.ok {
return errors.New("stat: failed to factorize ccor")
}
return nil
}
// CorrsTo returns the canonical correlations, using dst if it is not nil.
// If dst is not nil and len(dst) does not match the number of columns in
// the y input matrix, Corrs will panic.
func (c *CC) CorrsTo(dst []float64) []float64 {
if !c.ok {
panic("stat: canonical correlations missing or invalid")
}
if dst != nil && len(dst) != c.yd {
panic("stat: length of destination does not match input dimension")
}
return c.c.Values(dst)
}
// LeftTo returns the left eigenvectors of the canonical correlation matrix if
// spheredSpace is true. If spheredSpace is false it returns these eigenvectors
// back-transformed to the original data space.
//
// If dst is empty, LeftTo will resize dst to be xd×yd. When dst is
// non-empty, LeftTo will panic if dst is not xd×yd. LeftTo will also
// panic if the receiver does not contain a successful CC.
func (c *CC) LeftTo(dst *mat.Dense, spheredSpace bool) {
if !c.ok || c.n < 2 {
panic("stat: canonical correlations missing or invalid")
}
if dst.IsEmpty() {
dst.ReuseAs(c.xd, c.yd)
} else {
if d, n := dst.Dims(); d != c.xd || n != c.yd {
panic(mat.ErrShape)
}
}
c.c.UTo(dst)
if spheredSpace {
return
}
xs := c.x.Values(nil)
xv := &mat.Dense{}
c.x.VTo(xv)
scaleColsReciSqrt(xv, xs)
dst.Product(xv, xv.T(), dst)
dst.Scale(math.Sqrt(float64(c.n-1)), dst)
}
// RightTo returns the right eigenvectors of the canonical correlation matrix if
// spheredSpace is true. If spheredSpace is false it returns these eigenvectors
// back-transformed to the original data space.
//
// If dst is empty, RightTo will resize dst to be yd×yd. When dst is
// non-empty, RightTo will panic if dst is not yd×yd. RightTo will also
// panic if the receiver does not contain a successful CC.
func (c *CC) RightTo(dst *mat.Dense, spheredSpace bool) {
if !c.ok || c.n < 2 {
panic("stat: canonical correlations missing or invalid")
}
if dst.IsEmpty() {
dst.ReuseAs(c.yd, c.yd)
} else {
if d, n := dst.Dims(); d != c.yd || n != c.yd {
panic(mat.ErrShape)
}
}
c.c.VTo(dst)
if spheredSpace {
return
}
ys := c.y.Values(nil)
yv := &mat.Dense{}
c.y.VTo(yv)
scaleColsReciSqrt(yv, ys)
dst.Product(yv, yv.T(), dst)
dst.Scale(math.Sqrt(float64(c.n-1)), dst)
}
func svdFactorizeCentered(work *mat.SVD, m mat.Matrix, weights []float64) (svd *mat.SVD, ok bool) {
n, d := m.Dims()
centered := mat.NewDense(n, d, nil)
col := make([]float64, n)
for j := 0; j < d; j++ {
mat.Col(col, j, m)
floats.AddConst(-Mean(col, weights), col)
centered.SetCol(j, col)
}
for i, w := range weights {
floats.Scale(math.Sqrt(w), centered.RawRowView(i))
}
if work == nil {
work = &mat.SVD{}
}
ok = work.Factorize(centered, mat.SVDThin)
return work, ok
}
// scaleColsReciSqrt scales the columns of cols
// by the reciprocal square-root of vals.
func scaleColsReciSqrt(cols *mat.Dense, vals []float64) {
if cols == nil {
panic("stat: input nil")
}
n, d := cols.Dims()
if len(vals) != d {
panic("stat: input length mismatch")
}
col := make([]float64, n)
for j := 0; j < d; j++ {
mat.Col(col, j, cols)
floats.Scale(math.Sqrt(1/vals[j]), col)
cols.SetCol(j, col)
}
}