mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00

Changes made in dsp/fourier/internal/fftpack break the formatting used there, so these are reverted. There will be complaints in CI. [git-generate] gofmt -w . go generate gonum.org/v1/gonum/blas go generate gonum.org/v1/gonum/blas/gonum go generate gonum.org/v1/gonum/unit go generate gonum.org/v1/gonum/unit/constant go generate gonum.org/v1/gonum/graph/formats/dot go generate gonum.org/v1/gonum/graph/formats/rdf go generate gonum.org/v1/gonum/stat/card git checkout -- dsp/fourier/internal/fftpack
159 lines
3.2 KiB
Go
159 lines
3.2 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package r2
|
||
|
||
import "math"
|
||
|
||
// Vec is a 2D vector.
|
||
type Vec struct {
|
||
X, Y float64
|
||
}
|
||
|
||
// Add returns the vector sum of p and q.
|
||
func Add(p, q Vec) Vec {
|
||
return Vec{
|
||
X: p.X + q.X,
|
||
Y: p.Y + q.Y,
|
||
}
|
||
}
|
||
|
||
// Sub returns the vector sum of p and -q.
|
||
func Sub(p, q Vec) Vec {
|
||
return Vec{
|
||
X: p.X - q.X,
|
||
Y: p.Y - q.Y,
|
||
}
|
||
}
|
||
|
||
// Scale returns the vector p scaled by f.
|
||
func Scale(f float64, p Vec) Vec {
|
||
return Vec{
|
||
X: f * p.X,
|
||
Y: f * p.Y,
|
||
}
|
||
}
|
||
|
||
// Dot returns the dot product p·q.
|
||
func Dot(p, q Vec) float64 {
|
||
return p.X*q.X + p.Y*q.Y
|
||
}
|
||
|
||
// Cross returns the cross product p×q.
|
||
func Cross(p, q Vec) float64 {
|
||
return p.X*q.Y - p.Y*q.X
|
||
}
|
||
|
||
// Rotate returns a new vector, rotated by alpha around the provided point, q.
|
||
func Rotate(p Vec, alpha float64, q Vec) Vec {
|
||
return NewRotation(alpha, q).Rotate(p)
|
||
}
|
||
|
||
// Norm returns the Euclidean norm of p
|
||
//
|
||
// |p| = sqrt(p_x^2 + p_y^2).
|
||
func Norm(p Vec) float64 {
|
||
return math.Hypot(p.X, p.Y)
|
||
}
|
||
|
||
// Norm2 returns the Euclidean squared norm of p
|
||
//
|
||
// |p|^2 = p_x^2 + p_y^2.
|
||
func Norm2(p Vec) float64 {
|
||
return p.X*p.X + p.Y*p.Y
|
||
}
|
||
|
||
// Unit returns the unit vector colinear to p.
|
||
// Unit returns {NaN,NaN} for the zero vector.
|
||
func Unit(p Vec) Vec {
|
||
if p.X == 0 && p.Y == 0 {
|
||
return Vec{X: math.NaN(), Y: math.NaN()}
|
||
}
|
||
return Scale(1/Norm(p), p)
|
||
}
|
||
|
||
// Cos returns the cosine of the opening angle between p and q.
|
||
func Cos(p, q Vec) float64 {
|
||
return Dot(p, q) / (Norm(p) * Norm(q))
|
||
}
|
||
|
||
// Rotation describes a rotation in 2D.
|
||
type Rotation struct {
|
||
sin, cos float64
|
||
p Vec
|
||
}
|
||
|
||
// NewRotation creates a rotation by alpha, around p.
|
||
func NewRotation(alpha float64, p Vec) Rotation {
|
||
if alpha == 0 {
|
||
return Rotation{sin: 0, cos: 1, p: p}
|
||
}
|
||
sin, cos := math.Sincos(alpha)
|
||
return Rotation{sin: sin, cos: cos, p: p}
|
||
}
|
||
|
||
// Rotate returns p rotated according to the parameters used to construct
|
||
// the receiver.
|
||
func (r Rotation) Rotate(p Vec) Vec {
|
||
if r.isIdentity() {
|
||
return p
|
||
}
|
||
o := Sub(p, r.p)
|
||
return Add(Vec{
|
||
X: (o.X*r.cos - o.Y*r.sin),
|
||
Y: (o.X*r.sin + o.Y*r.cos),
|
||
}, r.p)
|
||
}
|
||
|
||
func (r Rotation) isIdentity() bool {
|
||
return r.sin == 0 && r.cos == 1
|
||
}
|
||
|
||
// minElem returns a vector with the element-wise
|
||
// minimum components of vectors a and b.
|
||
func minElem(a, b Vec) Vec {
|
||
return Vec{
|
||
X: math.Min(a.X, b.X),
|
||
Y: math.Min(a.Y, b.Y),
|
||
}
|
||
}
|
||
|
||
// maxElem returns a vector with the element-wise
|
||
// maximum components of vectors a and b.
|
||
func maxElem(a, b Vec) Vec {
|
||
return Vec{
|
||
X: math.Max(a.X, b.X),
|
||
Y: math.Max(a.Y, b.Y),
|
||
}
|
||
}
|
||
|
||
// absElem returns the vector with components set to their absolute value.
|
||
func absElem(a Vec) Vec {
|
||
return Vec{
|
||
X: math.Abs(a.X),
|
||
Y: math.Abs(a.Y),
|
||
}
|
||
}
|
||
|
||
// mulElem returns the Hadamard product between vectors a and b.
|
||
//
|
||
// v = {a.X*b.X, a.Y*b.Y, a.Z*b.Z}
|
||
func mulElem(a, b Vec) Vec {
|
||
return Vec{
|
||
X: a.X * b.X,
|
||
Y: a.Y * b.Y,
|
||
}
|
||
}
|
||
|
||
// divElem returns the Hadamard product between vector a
|
||
// and the inverse components of vector b.
|
||
//
|
||
// v = {a.X/b.X, a.Y/b.Y, a.Z/b.Z}
|
||
func divElem(a, b Vec) Vec {
|
||
return Vec{
|
||
X: a.X / b.X,
|
||
Y: a.Y / b.Y,
|
||
}
|
||
}
|