Files
gonum/spatial/r2/vector.go
Dan Kortschak 5f0141ca4c all: run gofmt and generate all packages
Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
2022-08-06 07:05:17 +09:30

159 lines
3.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r2
import "math"
// Vec is a 2D vector.
type Vec struct {
X, Y float64
}
// Add returns the vector sum of p and q.
func Add(p, q Vec) Vec {
return Vec{
X: p.X + q.X,
Y: p.Y + q.Y,
}
}
// Sub returns the vector sum of p and -q.
func Sub(p, q Vec) Vec {
return Vec{
X: p.X - q.X,
Y: p.Y - q.Y,
}
}
// Scale returns the vector p scaled by f.
func Scale(f float64, p Vec) Vec {
return Vec{
X: f * p.X,
Y: f * p.Y,
}
}
// Dot returns the dot product p·q.
func Dot(p, q Vec) float64 {
return p.X*q.X + p.Y*q.Y
}
// Cross returns the cross product p×q.
func Cross(p, q Vec) float64 {
return p.X*q.Y - p.Y*q.X
}
// Rotate returns a new vector, rotated by alpha around the provided point, q.
func Rotate(p Vec, alpha float64, q Vec) Vec {
return NewRotation(alpha, q).Rotate(p)
}
// Norm returns the Euclidean norm of p
//
// |p| = sqrt(p_x^2 + p_y^2).
func Norm(p Vec) float64 {
return math.Hypot(p.X, p.Y)
}
// Norm2 returns the Euclidean squared norm of p
//
// |p|^2 = p_x^2 + p_y^2.
func Norm2(p Vec) float64 {
return p.X*p.X + p.Y*p.Y
}
// Unit returns the unit vector colinear to p.
// Unit returns {NaN,NaN} for the zero vector.
func Unit(p Vec) Vec {
if p.X == 0 && p.Y == 0 {
return Vec{X: math.NaN(), Y: math.NaN()}
}
return Scale(1/Norm(p), p)
}
// Cos returns the cosine of the opening angle between p and q.
func Cos(p, q Vec) float64 {
return Dot(p, q) / (Norm(p) * Norm(q))
}
// Rotation describes a rotation in 2D.
type Rotation struct {
sin, cos float64
p Vec
}
// NewRotation creates a rotation by alpha, around p.
func NewRotation(alpha float64, p Vec) Rotation {
if alpha == 0 {
return Rotation{sin: 0, cos: 1, p: p}
}
sin, cos := math.Sincos(alpha)
return Rotation{sin: sin, cos: cos, p: p}
}
// Rotate returns p rotated according to the parameters used to construct
// the receiver.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
o := Sub(p, r.p)
return Add(Vec{
X: (o.X*r.cos - o.Y*r.sin),
Y: (o.X*r.sin + o.Y*r.cos),
}, r.p)
}
func (r Rotation) isIdentity() bool {
return r.sin == 0 && r.cos == 1
}
// minElem returns a vector with the element-wise
// minimum components of vectors a and b.
func minElem(a, b Vec) Vec {
return Vec{
X: math.Min(a.X, b.X),
Y: math.Min(a.Y, b.Y),
}
}
// maxElem returns a vector with the element-wise
// maximum components of vectors a and b.
func maxElem(a, b Vec) Vec {
return Vec{
X: math.Max(a.X, b.X),
Y: math.Max(a.Y, b.Y),
}
}
// absElem returns the vector with components set to their absolute value.
func absElem(a Vec) Vec {
return Vec{
X: math.Abs(a.X),
Y: math.Abs(a.Y),
}
}
// mulElem returns the Hadamard product between vectors a and b.
//
// v = {a.X*b.X, a.Y*b.Y, a.Z*b.Z}
func mulElem(a, b Vec) Vec {
return Vec{
X: a.X * b.X,
Y: a.Y * b.Y,
}
}
// divElem returns the Hadamard product between vector a
// and the inverse components of vector b.
//
// v = {a.X/b.X, a.Y/b.Y, a.Z/b.Z}
func divElem(a, b Vec) Vec {
return Vec{
X: a.X / b.X,
Y: a.Y / b.Y,
}
}