Files
gonum/mat/tridiag.go
Dan Kortschak 5f0141ca4c all: run gofmt and generate all packages
Changes made in dsp/fourier/internal/fftpack break the formatting used
there, so these are reverted. There will be complaints in CI.

[git-generate]
gofmt -w .
go generate gonum.org/v1/gonum/blas
go generate gonum.org/v1/gonum/blas/gonum
go generate gonum.org/v1/gonum/unit
go generate gonum.org/v1/gonum/unit/constant
go generate gonum.org/v1/gonum/graph/formats/dot
go generate gonum.org/v1/gonum/graph/formats/rdf
go generate gonum.org/v1/gonum/stat/card

git checkout -- dsp/fourier/internal/fftpack
2022-08-06 07:05:17 +09:30

408 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/internal/asm/f64"
"gonum.org/v1/gonum/lapack/lapack64"
)
var (
tridiagDense *Tridiag
_ Matrix = tridiagDense
_ allMatrix = tridiagDense
_ denseMatrix = tridiagDense
_ Banded = tridiagDense
_ MutableBanded = tridiagDense
_ RawTridiagonaler = tridiagDense
)
// A RawTridiagonaler can return a lapack64.Tridiagonal representation of the
// receiver. Changes to the elements of DL, D, DU in lapack64.Tridiagonal will
// be reflected in the original matrix, changes to the N field will not.
type RawTridiagonaler interface {
RawTridiagonal() lapack64.Tridiagonal
}
// Tridiag represents a tridiagonal matrix by its three diagonals.
type Tridiag struct {
mat lapack64.Tridiagonal
}
// NewTridiag creates a new n×n tridiagonal matrix with the first sub-diagonal
// in dl, the main diagonal in d and the first super-diagonal in du. If all of
// dl, d, and du are nil, new backing slices will be allocated for them. If dl
// and du have length n-1 and d has length n, they will be used as backing
// slices, and changes to the elements of the returned Tridiag will be reflected
// in dl, d, du. If neither of these is true, NewTridiag will panic.
func NewTridiag(n int, dl, d, du []float64) *Tridiag {
if n <= 0 {
if n == 0 {
panic(ErrZeroLength)
}
panic(ErrNegativeDimension)
}
if dl != nil || d != nil || du != nil {
if len(dl) != n-1 || len(d) != n || len(du) != n-1 {
panic(ErrShape)
}
} else {
d = make([]float64, n)
if n > 1 {
dl = make([]float64, n-1)
du = make([]float64, n-1)
}
}
return &Tridiag{
mat: lapack64.Tridiagonal{
N: n,
DL: dl,
D: d,
DU: du,
},
}
}
// Dims returns the number of rows and columns in the matrix.
func (a *Tridiag) Dims() (r, c int) {
return a.mat.N, a.mat.N
}
// Bandwidth returns 1, 1 - the upper and lower bandwidths of the matrix.
func (a *Tridiag) Bandwidth() (kl, ku int) {
return 1, 1
}
// T performs an implicit transpose by returning the receiver inside a Transpose.
func (a *Tridiag) T() Matrix {
// An alternative would be to return the receiver with DL,DU swapped; the
// untranspose function would then always return false. With Transpose the
// diagonal swapping will be done in tridiagonal routines in lapack like
// lapack64.Gtsv or gonum.Dlagtm based on the trans parameter.
return Transpose{a}
}
// TBand performs an implicit transpose by returning the receiver inside a
// TransposeBand.
func (a *Tridiag) TBand() Banded {
// An alternative would be to return the receiver with DL,DU swapped; see
// explanation in T above.
return TransposeBand{a}
}
// RawTridiagonal returns the underlying lapack64.Tridiagonal used by the
// receiver. Changes to elements in the receiver following the call will be
// reflected in the returned matrix.
func (a *Tridiag) RawTridiagonal() lapack64.Tridiagonal {
return a.mat
}
// SetRawTridiagonal sets the underlying lapack64.Tridiagonal used by the
// receiver. Changes to elements in the receiver following the call will be
// reflected in the input.
func (a *Tridiag) SetRawTridiagonal(mat lapack64.Tridiagonal) {
a.mat = mat
}
// IsEmpty returns whether the receiver is empty. Empty matrices can be the
// receiver for size-restricted operations. The receiver can be zeroed using
// Reset.
func (a *Tridiag) IsEmpty() bool {
return a.mat.N == 0
}
// Reset empties the matrix so that it can be reused as the receiver of a
// dimensionally restricted operation.
//
// Reset should not be used when the matrix shares backing data. See the Reseter
// interface for more information.
func (a *Tridiag) Reset() {
a.mat.N = 0
a.mat.DL = a.mat.DL[:0]
a.mat.D = a.mat.D[:0]
a.mat.DU = a.mat.DU[:0]
}
// CloneFromTridiag makes a copy of the input Tridiag into the receiver,
// overwriting the previous value of the receiver. CloneFromTridiag does not
// place any restrictions on receiver shape.
func (a *Tridiag) CloneFromTridiag(from *Tridiag) {
n := from.mat.N
switch n {
case 0:
panic(ErrZeroLength)
case 1:
a.mat = lapack64.Tridiagonal{
N: 1,
DL: use(a.mat.DL, 0),
D: use(a.mat.D, 1),
DU: use(a.mat.DU, 0),
}
a.mat.D[0] = from.mat.D[0]
default:
a.mat = lapack64.Tridiagonal{
N: n,
DL: use(a.mat.DL, n-1),
D: use(a.mat.D, n),
DU: use(a.mat.DU, n-1),
}
copy(a.mat.DL, from.mat.DL)
copy(a.mat.D, from.mat.D)
copy(a.mat.DU, from.mat.DU)
}
}
// DiagView returns the diagonal as a matrix backed by the original data.
func (a *Tridiag) DiagView() Diagonal {
return &DiagDense{
mat: blas64.Vector{
N: a.mat.N,
Data: a.mat.D[:a.mat.N],
Inc: 1,
},
}
}
// Zero sets all of the matrix elements to zero.
func (a *Tridiag) Zero() {
zero(a.mat.DL)
zero(a.mat.D)
zero(a.mat.DU)
}
// Trace returns the trace of the matrix.
//
// Trace will panic with ErrZeroLength if the matrix has zero size.
func (a *Tridiag) Trace() float64 {
if a.IsEmpty() {
panic(ErrZeroLength)
}
return f64.Sum(a.mat.D)
}
// Norm returns the specified norm of the receiver. Valid norms are:
//
// 1 - The maximum absolute column sum
// 2 - The Frobenius norm, the square root of the sum of the squares of the elements
// Inf - The maximum absolute row sum
//
// Norm will panic with ErrNormOrder if an illegal norm is specified and with
// ErrZeroLength if the matrix has zero size.
func (a *Tridiag) Norm(norm float64) float64 {
if a.IsEmpty() {
panic(ErrZeroLength)
}
return lapack64.Langt(normLapack(norm, false), a.mat)
}
// MulVecTo computes A⋅x or Aᵀ⋅x storing the result into dst.
func (a *Tridiag) MulVecTo(dst *VecDense, trans bool, x Vector) {
n := a.mat.N
if x.Len() != n {
panic(ErrShape)
}
dst.reuseAsNonZeroed(n)
t := blas.NoTrans
if trans {
t = blas.Trans
}
xMat, _ := untransposeExtract(x)
if xVec, ok := xMat.(*VecDense); ok && dst != xVec {
dst.checkOverlap(xVec.mat)
lapack64.Lagtm(t, 1, a.mat, xVec.asGeneral(), 0, dst.asGeneral())
} else {
xCopy := getVecDenseWorkspace(n, false)
xCopy.CloneFromVec(x)
lapack64.Lagtm(t, 1, a.mat, xCopy.asGeneral(), 0, dst.asGeneral())
putVecDenseWorkspace(xCopy)
}
}
// SolveTo solves a tridiagonal system A⋅X = B or Aᵀ⋅X = B where A is an
// n×n tridiagonal matrix represented by the receiver and B is a given n×nrhs
// matrix. If A is non-singular, the result will be stored into dst and nil will
// be returned. If A is singular, the contents of dst will be undefined and a
// Condition error will be returned.
func (a *Tridiag) SolveTo(dst *Dense, trans bool, b Matrix) error {
n, nrhs := b.Dims()
if n != a.mat.N {
panic(ErrShape)
}
if b, ok := b.(RawMatrixer); ok && dst != b {
dst.checkOverlap(b.RawMatrix())
}
dst.reuseAsNonZeroed(n, nrhs)
if dst != b {
dst.Copy(b)
}
var aCopy Tridiag
aCopy.CloneFromTridiag(a)
var ok bool
if trans {
ok = lapack64.Gtsv(blas.Trans, aCopy.mat, dst.mat)
} else {
ok = lapack64.Gtsv(blas.NoTrans, aCopy.mat, dst.mat)
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// SolveVecTo solves a tridiagonal system A⋅X = B or Aᵀ⋅X = B where A is an
// n×n tridiagonal matrix represented by the receiver and b is a given n-vector.
// If A is non-singular, the result will be stored into dst and nil will be
// returned. If A is singular, the contents of dst will be undefined and a
// Condition error will be returned.
func (a *Tridiag) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
n, nrhs := b.Dims()
if n != a.mat.N || nrhs != 1 {
panic(ErrShape)
}
if b, ok := b.(RawVectorer); ok && dst != b {
dst.checkOverlap(b.RawVector())
}
dst.reuseAsNonZeroed(n)
if dst != b {
dst.CopyVec(b)
}
var aCopy Tridiag
aCopy.CloneFromTridiag(a)
var ok bool
if trans {
ok = lapack64.Gtsv(blas.Trans, aCopy.mat, dst.asGeneral())
} else {
ok = lapack64.Gtsv(blas.NoTrans, aCopy.mat, dst.asGeneral())
}
if !ok {
return Condition(math.Inf(1))
}
return nil
}
// DoNonZero calls the function fn for each of the non-zero elements of A. The
// function fn takes a row/column index and the element value of A at (i,j).
func (a *Tridiag) DoNonZero(fn func(i, j int, v float64)) {
for i, aij := range a.mat.DU {
if aij != 0 {
fn(i, i+1, aij)
}
}
for i, aii := range a.mat.D {
if aii != 0 {
fn(i, i, aii)
}
}
for i, aij := range a.mat.DL {
if aij != 0 {
fn(i+1, i, aij)
}
}
}
// DoRowNonZero calls the function fn for each of the non-zero elements of row i
// of A. The function fn takes a row/column index and the element value of A at
// (i,j).
func (a *Tridiag) DoRowNonZero(i int, fn func(i, j int, v float64)) {
n := a.mat.N
if uint(i) >= uint(n) {
panic(ErrRowAccess)
}
if n == 1 {
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
return
}
switch i {
case 0:
v := a.mat.D[0]
if v != 0 {
fn(i, 0, v)
}
v = a.mat.DU[0]
if v != 0 {
fn(i, 1, v)
}
case n - 1:
v := a.mat.DL[n-2]
if v != 0 {
fn(n-1, n-2, v)
}
v = a.mat.D[n-1]
if v != 0 {
fn(n-1, n-1, v)
}
default:
v := a.mat.DL[i-1]
if v != 0 {
fn(i, i-1, v)
}
v = a.mat.D[i]
if v != 0 {
fn(i, i, v)
}
v = a.mat.DU[i]
if v != 0 {
fn(i, i+1, v)
}
}
}
// DoColNonZero calls the function fn for each of the non-zero elements of
// column j of A. The function fn takes a row/column index and the element value
// of A at (i, j).
func (a *Tridiag) DoColNonZero(j int, fn func(i, j int, v float64)) {
n := a.mat.N
if uint(j) >= uint(n) {
panic(ErrColAccess)
}
if n == 1 {
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
return
}
switch j {
case 0:
v := a.mat.D[0]
if v != 0 {
fn(0, 0, v)
}
v = a.mat.DL[0]
if v != 0 {
fn(1, 0, v)
}
case n - 1:
v := a.mat.DU[n-2]
if v != 0 {
fn(n-2, n-1, v)
}
v = a.mat.D[n-1]
if v != 0 {
fn(n-1, n-1, v)
}
default:
v := a.mat.DU[j-1]
if v != 0 {
fn(j-1, j, v)
}
v = a.mat.D[j]
if v != 0 {
fn(j, j, v)
}
v = a.mat.DL[j]
if v != 0 {
fn(j+1, j, v)
}
}
}