Files
gonum/interp/cubic.go
Dan Kortschak b2a1b49ea5 all: convert ' to ′ and '' to ′′
This is necessary because gofmt in go1.19 imposes smart quotes on comments
that use pairs of single quotes. Doubled-up single tick, U+2032, is chosen
over double tick, U+2033, since the latter is harder to distinguish in many
fonts at normally used font sizes, sometimes being indistinguishable from
other superscript marks such as asterisk. Comparison: ′ ″ *
2022-08-06 07:05:17 +09:30

514 lines
15 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2020 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package interp
import (
"math"
"gonum.org/v1/gonum/mat"
)
// PiecewiseCubic is a piecewise cubic 1-dimensional interpolator with
// continuous value and first derivative.
type PiecewiseCubic struct {
// Interpolated X values.
xs []float64
// Coefficients of interpolating cubic polynomials, with
// len(xs) - 1 rows and 4 columns. The interpolated value
// for xs[i] <= x < xs[i + 1] is defined as
// sum_{k = 0}^3 coeffs.At(i, k) * (x - xs[i])^k
// To guarantee left-continuity, coeffs.At(i, 0) == ys[i].
coeffs mat.Dense
// Last interpolated Y value, corresponding to xs[len(xs) - 1].
lastY float64
// Last interpolated dY/dX value, corresponding to xs[len(xs) - 1].
lastDyDx float64
}
// Predict returns the interpolation value at x.
func (pc *PiecewiseCubic) Predict(x float64) float64 {
i := findSegment(pc.xs, x)
if i < 0 {
return pc.coeffs.At(0, 0)
}
m := len(pc.xs) - 1
if x == pc.xs[i] {
if i < m {
return pc.coeffs.At(i, 0)
}
return pc.lastY
}
if i == m {
return pc.lastY
}
dx := x - pc.xs[i]
a := pc.coeffs.RawRowView(i)
return ((a[3]*dx+a[2])*dx+a[1])*dx + a[0]
}
// PredictDerivative returns the predicted derivative at x.
func (pc *PiecewiseCubic) PredictDerivative(x float64) float64 {
i := findSegment(pc.xs, x)
if i < 0 {
return pc.coeffs.At(0, 1)
}
m := len(pc.xs) - 1
if x == pc.xs[i] {
if i < m {
return pc.coeffs.At(i, 1)
}
return pc.lastDyDx
}
if i == m {
return pc.lastDyDx
}
dx := x - pc.xs[i]
a := pc.coeffs.RawRowView(i)
return (3*a[3]*dx+2*a[2])*dx + a[1]
}
// FitWithDerivatives fits a piecewise cubic predictor to (X, Y, dY/dX) value
// triples provided as three slices.
// It panics if len(xs) < 2, elements of xs are not strictly increasing,
// len(xs) != len(ys) or len(xs) != len(dydxs).
func (pc *PiecewiseCubic) FitWithDerivatives(xs, ys, dydxs []float64) {
n := len(xs)
if len(ys) != n {
panic(differentLengths)
}
if len(dydxs) != n {
panic(differentLengths)
}
if n < 2 {
panic(tooFewPoints)
}
m := n - 1
pc.coeffs.Reset()
pc.coeffs.ReuseAs(m, 4)
for i := 0; i < m; i++ {
dx := xs[i+1] - xs[i]
if dx <= 0 {
panic(xsNotStrictlyIncreasing)
}
dy := ys[i+1] - ys[i]
// a_0
pc.coeffs.Set(i, 0, ys[i])
// a_1
pc.coeffs.Set(i, 1, dydxs[i])
// Solve a linear equation system for a_2 and a_3.
pc.coeffs.Set(i, 2, (3*dy-(2*dydxs[i]+dydxs[i+1])*dx)/dx/dx)
pc.coeffs.Set(i, 3, (-2*dy+(dydxs[i]+dydxs[i+1])*dx)/dx/dx/dx)
}
pc.xs = append(pc.xs[:0], xs...)
pc.lastY = ys[m]
pc.lastDyDx = dydxs[m]
}
// AkimaSpline is a piecewise cubic 1-dimensional interpolator with
// continuous value and first derivative, which can be fitted to (X, Y)
// value pairs without providing derivatives.
// See https://www.iue.tuwien.ac.at/phd/rottinger/node60.html for more details.
type AkimaSpline struct {
cubic PiecewiseCubic
}
// Predict returns the interpolation value at x.
func (as *AkimaSpline) Predict(x float64) float64 {
return as.cubic.Predict(x)
}
// PredictDerivative returns the predicted derivative at x.
func (as *AkimaSpline) PredictDerivative(x float64) float64 {
return as.cubic.PredictDerivative(x)
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It panics if len(xs) < 2, elements of xs are not strictly increasing
// or len(xs) != len(ys). Always returns nil.
func (as *AkimaSpline) Fit(xs, ys []float64) error {
n := len(xs)
if len(ys) != n {
panic(differentLengths)
}
dydxs := make([]float64, n)
if n == 2 {
dx := xs[1] - xs[0]
slope := (ys[1] - ys[0]) / dx
dydxs[0] = slope
dydxs[1] = slope
as.cubic.FitWithDerivatives(xs, ys, dydxs)
return nil
}
slopes := akimaSlopes(xs, ys)
for i := 0; i < n; i++ {
wLeft, wRight := akimaWeights(slopes, i)
dydxs[i] = akimaWeightedAverage(slopes[i+1], slopes[i+2], wLeft, wRight)
}
as.cubic.FitWithDerivatives(xs, ys, dydxs)
return nil
}
// akimaSlopes returns slopes for Akima spline method, including the approximations
// of slopes outside the data range (two on each side).
// It panics if len(xs) <= 2, elements of xs are not strictly increasing
// or len(xs) != len(ys).
func akimaSlopes(xs, ys []float64) []float64 {
n := len(xs)
if n <= 2 {
panic(tooFewPoints)
}
if len(ys) != n {
panic(differentLengths)
}
m := n + 3
slopes := make([]float64, m)
for i := 2; i < m-2; i++ {
dx := xs[i-1] - xs[i-2]
if dx <= 0 {
panic(xsNotStrictlyIncreasing)
}
slopes[i] = (ys[i-1] - ys[i-2]) / dx
}
slopes[0] = 3*slopes[2] - 2*slopes[3]
slopes[1] = 2*slopes[2] - slopes[3]
slopes[m-2] = 2*slopes[m-3] - slopes[m-4]
slopes[m-1] = 3*slopes[m-3] - 2*slopes[m-4]
return slopes
}
// akimaWeightedAverage returns (v1 * w1 + v2 * w2) / (w1 + w2) for w1, w2 >= 0 (not checked).
// If w1 == w2 == 0, it returns a simple average of v1 and v2.
func akimaWeightedAverage(v1, v2, w1, w2 float64) float64 {
w := w1 + w2
if w > 0 {
return (v1*w1 + v2*w2) / w
}
return 0.5*v1 + 0.5*v2
}
// akimaWeights returns the left and right weight for approximating
// the i-th derivative with neighbouring slopes.
func akimaWeights(slopes []float64, i int) (float64, float64) {
wLeft := math.Abs(slopes[i+2] - slopes[i+3])
wRight := math.Abs(slopes[i+1] - slopes[i])
return wLeft, wRight
}
// FritschButland is a piecewise cubic 1-dimensional interpolator with
// continuous value and first derivative, which can be fitted to (X, Y)
// value pairs without providing derivatives.
// It is monotone, local and produces a C^1 curve. Its downside is that
// exhibits high tension, flattening out unnaturally the interpolated
// curve between the nodes.
// See Fritsch, F. N. and Butland, J., "A method for constructing local
// monotone piecewise cubic interpolants" (1984), SIAM J. Sci. Statist.
// Comput., 5(2), pp. 300-304.
type FritschButland struct {
cubic PiecewiseCubic
}
// Predict returns the interpolation value at x.
func (fb *FritschButland) Predict(x float64) float64 {
return fb.cubic.Predict(x)
}
// PredictDerivative returns the predicted derivative at x.
func (fb *FritschButland) PredictDerivative(x float64) float64 {
return fb.cubic.PredictDerivative(x)
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It panics if len(xs) < 2, elements of xs are not strictly increasing
// or len(xs) != len(ys). Always returns nil.
func (fb *FritschButland) Fit(xs, ys []float64) error {
n := len(xs)
if n < 2 {
panic(tooFewPoints)
}
if len(ys) != n {
panic(differentLengths)
}
dydxs := make([]float64, n)
if n == 2 {
dx := xs[1] - xs[0]
slope := (ys[1] - ys[0]) / dx
dydxs[0] = slope
dydxs[1] = slope
fb.cubic.FitWithDerivatives(xs, ys, dydxs)
return nil
}
slopes := calculateSlopes(xs, ys)
m := len(slopes)
prevSlope := slopes[0]
for i := 1; i < m; i++ {
slope := slopes[i]
if slope*prevSlope > 0 {
dydxs[i] = 3 * (xs[i+1] - xs[i-1]) / ((2*xs[i+1]-xs[i-1]-xs[i])/slopes[i-1] +
(xs[i+1]+xs[i]-2*xs[i-1])/slopes[i])
} else {
dydxs[i] = 0
}
prevSlope = slope
}
dydxs[0] = fritschButlandEdgeDerivative(xs, ys, slopes, true)
dydxs[m] = fritschButlandEdgeDerivative(xs, ys, slopes, false)
fb.cubic.FitWithDerivatives(xs, ys, dydxs)
return nil
}
// fritschButlandEdgeDerivative calculates dy/dx approximation for the
// Fritsch-Butland method for the left or right edge node.
func fritschButlandEdgeDerivative(xs, ys, slopes []float64, leftEdge bool) float64 {
n := len(xs)
var dE, dI, h, hE, f float64
if leftEdge {
dE = slopes[0]
dI = slopes[1]
xE := xs[0]
xM := xs[1]
xI := xs[2]
hE = xM - xE
h = xI - xE
f = xM + xI - 2*xE
} else {
dE = slopes[n-2]
dI = slopes[n-3]
xE := xs[n-1]
xM := xs[n-2]
xI := xs[n-3]
hE = xE - xM
h = xE - xI
f = 2*xE - xI - xM
}
g := (f*dE - hE*dI) / h
if g*dE <= 0 {
return 0
}
if dE*dI <= 0 && math.Abs(g) > 3*math.Abs(dE) {
return 3 * dE
}
return g
}
// fitWithSecondDerivatives fits a piecewise cubic predictor to (X, Y, d^2Y/dX^2) value
// triples provided as three slices.
// It panics if any of these is true:
// - len(xs) < 2,
// - elements of xs are not strictly increasing,
// - len(xs) != len(ys),
// - len(xs) != len(d2ydx2s).
// Note that this method does not guarantee on its own the continuity of first derivatives.
func (pc *PiecewiseCubic) fitWithSecondDerivatives(xs, ys, d2ydx2s []float64) {
n := len(xs)
switch {
case len(ys) != n, len(d2ydx2s) != n:
panic(differentLengths)
case n < 2:
panic(tooFewPoints)
}
m := n - 1
pc.coeffs.Reset()
pc.coeffs.ReuseAs(m, 4)
for i := 0; i < m; i++ {
dx := xs[i+1] - xs[i]
if dx <= 0 {
panic(xsNotStrictlyIncreasing)
}
dy := ys[i+1] - ys[i]
dm := d2ydx2s[i+1] - d2ydx2s[i]
pc.coeffs.Set(i, 0, ys[i]) // a_0
pc.coeffs.Set(i, 1, (dy-(d2ydx2s[i]+dm/3)*dx*dx/2)/dx) // a_1
pc.coeffs.Set(i, 2, d2ydx2s[i]/2) // a_2
pc.coeffs.Set(i, 3, dm/6/dx) // a_3
}
pc.xs = append(pc.xs[:0], xs...)
pc.lastY = ys[m]
lastDx := xs[m] - xs[m-1]
pc.lastDyDx = pc.coeffs.At(m-1, 1) + 2*pc.coeffs.At(m-1, 2)*lastDx + 3*pc.coeffs.At(m-1, 3)*lastDx*lastDx
}
// makeCubicSplineSecondDerivativeEquations generates the basic system of linear equations
// which have to be satisfied by the second derivatives to make the first derivatives of a
// cubic spline continuous. It panics if elements of xs are not strictly increasing, or
// len(xs) != len(ys).
// makeCubicSplineSecondDerivativeEquations fills a banded matrix a and a vector b
// defining a system of linear equations a*m = b for second derivatives vector m.
// Parameters a and b are assumed to have correct dimensions and initialised to zero.
func makeCubicSplineSecondDerivativeEquations(a mat.MutableBanded, b mat.MutableVector, xs, ys []float64) {
n := len(xs)
if len(ys) != n {
panic(differentLengths)
}
m := n - 1
if n > 2 {
for i := 0; i < m; i++ {
dx := xs[i+1] - xs[i]
if dx <= 0 {
panic(xsNotStrictlyIncreasing)
}
slope := (ys[i+1] - ys[i]) / dx
if i > 0 {
b.SetVec(i, b.AtVec(i)+slope)
a.SetBand(i, i, a.At(i, i)+dx/3)
a.SetBand(i, i+1, dx/6)
}
if i < m-1 {
b.SetVec(i+1, b.AtVec(i+1)-slope)
a.SetBand(i+1, i+1, a.At(i+1, i+1)+dx/3)
a.SetBand(i+1, i, dx/6)
}
}
}
}
// NaturalCubic is a piecewise cubic 1-dimensional interpolator with
// continuous value, first and second derivatives, which can be fitted to (X, Y)
// value pairs without providing derivatives. It uses the boundary conditions
// Y(left end ) = Y(right end) = 0.
// See e.g. https://www.math.drexel.edu/~tolya/cubicspline.pdf for details.
type NaturalCubic struct {
cubic PiecewiseCubic
}
// Predict returns the interpolation value at x.
func (nc *NaturalCubic) Predict(x float64) float64 {
return nc.cubic.Predict(x)
}
// PredictDerivative returns the predicted derivative at x.
func (nc *NaturalCubic) PredictDerivative(x float64) float64 {
return nc.cubic.PredictDerivative(x)
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It panics if len(xs) < 2, elements of xs are not strictly increasing
// or len(xs) != len(ys). It returns an error if solving the required system
// of linear equations fails.
func (nc *NaturalCubic) Fit(xs, ys []float64) error {
n := len(xs)
a := mat.NewTridiag(n, nil, nil, nil)
b := mat.NewVecDense(n, nil)
makeCubicSplineSecondDerivativeEquations(a, b, xs, ys)
// Add boundary conditions y(left) = y(right) = 0:
b.SetVec(0, 0)
b.SetVec(n-1, 0)
a.SetBand(0, 0, 1)
a.SetBand(n-1, n-1, 1)
x := mat.NewVecDense(n, nil)
err := a.SolveVecTo(x, false, b)
if err == nil {
nc.cubic.fitWithSecondDerivatives(xs, ys, x.RawVector().Data)
}
return err
}
// ClampedCubic is a piecewise cubic 1-dimensional interpolator with
// continuous value, first and second derivatives, which can be fitted to (X, Y)
// value pairs without providing derivatives. It uses the boundary conditions
// Y(left end ) = Y(right end) = 0.
type ClampedCubic struct {
cubic PiecewiseCubic
}
// Predict returns the interpolation value at x.
func (cc *ClampedCubic) Predict(x float64) float64 {
return cc.cubic.Predict(x)
}
// PredictDerivative returns the predicted derivative at x.
func (cc *ClampedCubic) PredictDerivative(x float64) float64 {
return cc.cubic.PredictDerivative(x)
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It panics if len(xs) < 2, elements of xs are not strictly increasing
// or len(xs) != len(ys). It returns an error if solving the required system
// of linear equations fails.
func (cc *ClampedCubic) Fit(xs, ys []float64) error {
n := len(xs)
a := mat.NewTridiag(n, nil, nil, nil)
b := mat.NewVecDense(n, nil)
makeCubicSplineSecondDerivativeEquations(a, b, xs, ys)
// Add boundary conditions y(left) = y(right) = 0:
// Condition Y(left end) = 0:
dxL := xs[1] - xs[0]
b.SetVec(0, (ys[1]-ys[0])/dxL)
a.SetBand(0, 0, dxL/3)
a.SetBand(0, 1, dxL/6)
// Condition Y(right end) = 0:
m := n - 1
dxR := xs[m] - xs[m-1]
b.SetVec(m, (ys[m]-ys[m-1])/dxR)
a.SetBand(m, m, -dxR/3)
a.SetBand(m, m-1, -dxR/6)
x := mat.NewVecDense(n, nil)
err := a.SolveVecTo(x, false, b)
if err == nil {
cc.cubic.fitWithSecondDerivatives(xs, ys, x.RawVector().Data)
}
return err
}
// NotAKnotCubic is a piecewise cubic 1-dimensional interpolator with
// continuous value, first and second derivatives, which can be fitted to (X, Y)
// value pairs without providing derivatives. It imposes the condition that
// the third derivative of the interpolant is continuous in the first and
// last interior node.
// See http://www.cs.tau.ac.il/~turkel/notes/numeng/spline_note.pdf for details.
type NotAKnotCubic struct {
cubic PiecewiseCubic
}
// Predict returns the interpolation value at x.
func (nak *NotAKnotCubic) Predict(x float64) float64 {
return nak.cubic.Predict(x)
}
// PredictDerivative returns the predicted derivative at x.
func (nak *NotAKnotCubic) PredictDerivative(x float64) float64 {
return nak.cubic.PredictDerivative(x)
}
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
// It panics if len(xs) < 3 (because at least one interior node is required),
// elements of xs are not strictly increasing or len(xs) != len(ys).
// It returns an error if solving the required system of linear equations fails.
func (nak *NotAKnotCubic) Fit(xs, ys []float64) error {
n := len(xs)
if n < 3 {
panic(tooFewPoints)
}
a := mat.NewBandDense(n, n, 2, 2, nil)
b := mat.NewVecDense(n, nil)
makeCubicSplineSecondDerivativeEquations(a, b, xs, ys)
// Add boundary conditions.
// First interior node:
dxOuter := xs[1] - xs[0]
dxInner := xs[2] - xs[1]
a.SetBand(0, 0, 1/dxOuter)
a.SetBand(0, 1, -1/dxOuter-1/dxInner)
a.SetBand(0, 2, 1/dxInner)
if n > 3 {
// Last interior node:
m := n - 1
dxOuter = xs[m] - xs[m-1]
dxInner = xs[m-1] - xs[m-2]
a.SetBand(m, m, 1/dxOuter)
a.SetBand(m, m-1, -1/dxOuter-1/dxInner)
a.SetBand(m, m-2, 1/dxInner)
}
x := mat.NewVecDense(n, nil)
err := x.SolveVec(a, b)
if err == nil {
nak.cubic.fitWithSecondDerivatives(xs, ys, x.RawVector().Data)
}
return err
}