Files
gonum/graph/path/dynamic/dstarlite_test.go
Dan Kortschak 142f1a8c6b graph: make graph analysis routines safe for indeterminate iterators
This is a change in design for the graph.NodesOf family of functions. The
alternative was to provide an equivalent set of non-panicking routines in
graph for internal use. The protection that was intended with the panic
was to panic early rather than late when an indeterminate iterator exhausts
slice index space. I think in hindsight this was an error and we should
let things blow up in that (likely rare) situation.

The majority of changes are in test code. Outside the iterator package, which
is intimately tied to the determined iterator implementations, only one test
now fails if an indeterminate iterator is used, product's Modular extended
sub-graph isomorphism example, which is an algorithm that would have time
complexity issues with large iterators anyway.
2020-07-02 07:47:46 +09:30

686 lines
15 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dynamic
import (
"bytes"
"flag"
"fmt"
"math"
"reflect"
"strings"
"testing"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/path"
"gonum.org/v1/gonum/graph/path/internal/testgraphs"
"gonum.org/v1/gonum/graph/simple"
)
var (
debug = flag.Bool("debug", false, "write path progress for failing dynamic case tests")
vdebug = flag.Bool("vdebug", false, "write path progress for all dynamic case tests (requires test.v)")
maxWide = flag.Int("maxwidth", 5, "maximum width grid to dump for debugging")
)
func TestDStarLiteNullHeuristic(t *testing.T) {
t.Parallel()
for _, test := range testgraphs.ShortestPathTests {
// Skip zero-weight cycles.
if strings.HasPrefix(test.Name, "zero-weight") {
continue
}
g := test.Graph()
for _, e := range test.Edges {
g.SetWeightedEdge(e)
}
var (
d *DStarLite
panicked bool
)
func() {
defer func() {
panicked = recover() != nil
}()
d = NewDStarLite(test.Query.From(), test.Query.To(), g.(graph.Graph), path.NullHeuristic, simple.NewWeightedDirectedGraph(0, math.Inf(1)))
}()
if panicked || test.HasNegativeWeight {
if !test.HasNegativeWeight {
t.Errorf("%q: unexpected panic", test.Name)
}
if !panicked {
t.Errorf("%q: expected panic for negative edge weight", test.Name)
}
continue
}
p, weight := d.Path()
if !math.IsInf(weight, 1) && p[0].ID() != test.Query.From().ID() {
t.Fatalf("%q: unexpected from node ID: got:%d want:%d", test.Name, p[0].ID(), test.Query.From().ID())
}
if weight != test.Weight {
t.Errorf("%q: unexpected weight from Between: got:%f want:%f",
test.Name, weight, test.Weight)
}
var got []int64
for _, n := range p {
got = append(got, n.ID())
}
ok := len(got) == 0 && len(test.WantPaths) == 0
for _, sp := range test.WantPaths {
if reflect.DeepEqual(got, sp) {
ok = true
break
}
}
if !ok {
t.Errorf("%q: unexpected shortest path:\ngot: %v\nwant from:%v",
test.Name, p, test.WantPaths)
}
}
}
var dynamicDStarLiteTests = []struct {
g *testgraphs.Grid
radius float64
all bool
diag, unit bool
remember []bool
modify func(*testgraphs.LimitedVisionGrid)
heuristic func(dx, dy float64) float64
s, t graph.Node
want []graph.Node
weight float64
wantedPaths map[int64][]graph.Node
}{
{
// This is the example shown in figures 6 and 7 of doi:10.1109/tro.2004.838026.
g: testgraphs.NewGridFrom(
"...",
".*.",
".*.",
".*.",
"...",
),
radius: 1.5,
all: true,
diag: true,
unit: true,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Max(math.Abs(dx), math.Abs(dy))
},
s: simple.Node(3),
t: simple.Node(14),
want: []graph.Node{
simple.Node(3),
simple.Node(6),
simple.Node(9),
simple.Node(13),
simple.Node(14),
},
weight: 4,
},
{
// This is a small example that has the property that the first corner
// may be taken incorrectly at 90° or correctly at 45° because the
// calculated rhs values of 12 and 17 are tied when moving from node
// 16, and the grid is small enough to examine by a dump.
g: testgraphs.NewGridFrom(
".....",
"...*.",
"**.*.",
"...*.",
),
radius: 1.5,
all: true,
diag: true,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Max(math.Abs(dx), math.Abs(dy))
},
s: simple.Node(15),
t: simple.Node(14),
want: []graph.Node{
simple.Node(15),
simple.Node(16),
simple.Node(12),
simple.Node(7),
simple.Node(3),
simple.Node(9),
simple.Node(14),
},
weight: 7.242640687119285,
wantedPaths: map[int64][]graph.Node{
12: {simple.Node(12), simple.Node(7), simple.Node(3), simple.Node(9), simple.Node(14)},
},
},
{
// This is the example shown in figure 2 of doi:10.1109/tro.2004.838026
// with the exception that diagonal edge weights are calculated with the hypot
// function instead of a step count and only allowing information to be known
// from exploration.
g: testgraphs.NewGridFrom(
"..................",
"..................",
"..................",
"..................",
"..................",
"..................",
"....*.*...........",
"*****.***.........",
"......*...........",
"......***.........",
"......*...........",
"......*...........",
"......*...........",
"*****.*...........",
"......*...........",
),
radius: 1.5,
all: true,
diag: true,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Max(math.Abs(dx), math.Abs(dy))
},
s: simple.Node(253),
t: simple.Node(122),
want: []graph.Node{
simple.Node(253),
simple.Node(254),
simple.Node(255),
simple.Node(256),
simple.Node(239),
simple.Node(221),
simple.Node(203),
simple.Node(185),
simple.Node(167),
simple.Node(149),
simple.Node(131),
simple.Node(113),
simple.Node(96),
// The following section depends
// on map iteration order.
nil,
nil,
nil,
nil,
nil,
nil,
nil,
simple.Node(122),
},
weight: 21.242640687119287,
},
{
// This is the example shown in figure 2 of doi:10.1109/tro.2004.838026
// with the exception that diagonal edge weights are calculated with the hypot
// function instead of a step count, not closing the exit and only allowing
// information to be known from exploration.
g: testgraphs.NewGridFrom(
"..................",
"..................",
"..................",
"..................",
"..................",
"..................",
"....*.*...........",
"*****.***.........",
"..................", // Keep open.
"......***.........",
"......*...........",
"......*...........",
"......*...........",
"*****.*...........",
"......*...........",
),
radius: 1.5,
all: true,
diag: true,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Max(math.Abs(dx), math.Abs(dy))
},
s: simple.Node(253),
t: simple.Node(122),
want: []graph.Node{
simple.Node(253),
simple.Node(254),
simple.Node(255),
simple.Node(256),
simple.Node(239),
simple.Node(221),
simple.Node(203),
simple.Node(185),
simple.Node(167),
simple.Node(150),
simple.Node(151),
simple.Node(152),
// The following section depends
// on map iteration order.
nil,
nil,
nil,
nil,
nil,
simple.Node(122),
},
weight: 18.656854249492383,
},
{
// This is the example shown in figure 2 of doi:10.1109/tro.2004.838026
// with the exception that diagonal edge weights are calculated with the hypot
// function instead of a step count, the exit is closed at a distance and
// information is allowed to be known from exploration.
g: testgraphs.NewGridFrom(
"..................",
"..................",
"..................",
"..................",
"..................",
"..................",
"....*.*...........",
"*****.***.........",
"........*.........",
"......***.........",
"......*...........",
"......*...........",
"......*...........",
"*****.*...........",
"......*...........",
),
radius: 1.5,
all: true,
diag: true,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Max(math.Abs(dx), math.Abs(dy))
},
s: simple.Node(253),
t: simple.Node(122),
want: []graph.Node{
simple.Node(253),
simple.Node(254),
simple.Node(255),
simple.Node(256),
simple.Node(239),
simple.Node(221),
simple.Node(203),
simple.Node(185),
simple.Node(167),
simple.Node(150),
simple.Node(151),
simple.Node(150),
simple.Node(131),
simple.Node(113),
simple.Node(96),
// The following section depends
// on map iteration order.
nil,
nil,
nil,
nil,
nil,
nil,
nil,
simple.Node(122),
},
weight: 24.07106781186548,
},
{
// This is the example shown in figure 2 of doi:10.1109/tro.2004.838026
// with the exception that diagonal edge weights are calculated with the hypot
// function instead of a step count.
g: testgraphs.NewGridFrom(
"..................",
"..................",
"..................",
"..................",
"..................",
"..................",
"....*.*...........",
"*****.***.........",
"......*...........", // Forget this wall.
"......***.........",
"......*...........",
"......*...........",
"......*...........",
"*****.*...........",
"......*...........",
),
radius: 1.5,
all: true,
diag: true,
remember: []bool{true},
modify: func(l *testgraphs.LimitedVisionGrid) {
all := l.Grid.AllVisible
l.Grid.AllVisible = false
for _, n := range graph.NodesOf(l.Nodes()) {
id := n.ID()
l.Known[id] = l.Grid.Node(id) == nil
}
l.Grid.AllVisible = all
const (
wallRow = 8
wallCol = 6
)
l.Known[l.NodeAt(wallRow, wallCol).ID()] = false
// Check we have a correctly modified representation.
nodes := graph.NodesOf(l.Nodes())
for _, u := range nodes {
uid := u.ID()
for _, v := range nodes {
vid := v.ID()
if l.HasEdgeBetween(uid, vid) != l.Grid.HasEdgeBetween(uid, vid) {
ur, uc := l.RowCol(uid)
vr, vc := l.RowCol(vid)
if (ur == wallRow && uc == wallCol) || (vr == wallRow && vc == wallCol) {
if !l.HasEdgeBetween(uid, vid) {
panic(fmt.Sprintf("expected to believe edge between %v (%d,%d) and %v (%d,%d) is passable",
u, v, ur, uc, vr, vc))
}
continue
}
panic(fmt.Sprintf("disagreement about edge between %v (%d,%d) and %v (%d,%d): got:%t want:%t",
u, v, ur, uc, vr, vc, l.HasEdgeBetween(uid, vid), l.Grid.HasEdgeBetween(uid, vid)))
}
}
}
},
heuristic: func(dx, dy float64) float64 {
return math.Max(math.Abs(dx), math.Abs(dy))
},
s: simple.Node(253),
t: simple.Node(122),
want: []graph.Node{
simple.Node(253),
simple.Node(254),
simple.Node(255),
simple.Node(256),
simple.Node(239),
simple.Node(221),
simple.Node(203),
simple.Node(185),
simple.Node(167),
simple.Node(149),
simple.Node(131),
simple.Node(113),
simple.Node(96),
// The following section depends
// on map iteration order.
nil,
nil,
nil,
nil,
nil,
nil,
nil,
simple.Node(122),
},
weight: 21.242640687119287,
},
{
g: testgraphs.NewGridFrom(
"*..*",
"**.*",
"**.*",
"**.*",
),
radius: 1,
all: true,
diag: false,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Hypot(dx, dy)
},
s: simple.Node(1),
t: simple.Node(14),
want: []graph.Node{
simple.Node(1),
simple.Node(2),
simple.Node(6),
simple.Node(10),
simple.Node(14),
},
weight: 4,
},
{
g: testgraphs.NewGridFrom(
"*..*",
"**.*",
"**.*",
"**.*",
),
radius: 1.5,
all: true,
diag: true,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Hypot(dx, dy)
},
s: simple.Node(1),
t: simple.Node(14),
want: []graph.Node{
simple.Node(1),
simple.Node(6),
simple.Node(10),
simple.Node(14),
},
weight: math.Sqrt2 + 2,
},
{
g: testgraphs.NewGridFrom(
"...",
".*.",
".*.",
".*.",
".*.",
),
radius: 1,
all: true,
diag: false,
remember: []bool{false, true},
heuristic: func(dx, dy float64) float64 {
return math.Hypot(dx, dy)
},
s: simple.Node(6),
t: simple.Node(14),
want: []graph.Node{
simple.Node(6),
simple.Node(9),
simple.Node(12),
simple.Node(9),
simple.Node(6),
simple.Node(3),
simple.Node(0),
simple.Node(1),
simple.Node(2),
simple.Node(5),
simple.Node(8),
simple.Node(11),
simple.Node(14),
},
weight: 12,
},
}
func TestDStarLiteDynamic(t *testing.T) {
t.Parallel()
for i, test := range dynamicDStarLiteTests {
for _, remember := range test.remember {
l := &testgraphs.LimitedVisionGrid{
Grid: test.g,
VisionRadius: test.radius,
Location: test.s,
}
if remember {
l.Known = make(map[int64]bool)
}
l.Grid.AllVisible = test.all
l.Grid.AllowDiagonal = test.diag
l.Grid.UnitEdgeWeight = test.unit
if test.modify != nil {
test.modify(l)
}
got := []graph.Node{test.s}
l.MoveTo(test.s)
heuristic := func(a, b graph.Node) float64 {
ax, ay := l.XY(a.ID())
bx, by := l.XY(b.ID())
return test.heuristic(ax-bx, ay-by)
}
world := simple.NewWeightedDirectedGraph(0, math.Inf(1))
d := NewDStarLite(test.s, test.t, l, heuristic, world)
var (
dp *dumper
buf bytes.Buffer
)
_, c := l.Grid.Dims()
if c <= *maxWide && (*debug || *vdebug) {
dp = &dumper{
w: &buf,
dStarLite: d,
grid: l,
}
}
dp.dump(true)
dp.printEdges("Initial world knowledge: %s\n\n", simpleWeightedEdgesOf(l, graph.EdgesOf(world.Edges())))
for d.Step() {
changes, _ := l.MoveTo(d.Here())
got = append(got, l.Location)
d.UpdateWorld(changes)
dp.dump(true)
if wantedPath, ok := test.wantedPaths[l.Location.ID()]; ok {
gotPath, _ := d.Path()
if !samePath(gotPath, wantedPath) {
t.Errorf("unexpected intermediate path estimation for test %d %s memory:\ngot: %v\nwant:%v",
i, memory(remember), gotPath, wantedPath)
}
}
dp.printEdges("Edges changing after last step:\n%s\n\n", simpleWeightedEdgesOf(l, changes))
}
if weight := weightOf(got, l.Grid); !samePath(got, test.want) || weight != test.weight {
t.Errorf("unexpected path for test %d %s memory got weight:%v want weight:%v:\ngot: %v\nwant:%v",
i, memory(remember), weight, test.weight, got, test.want)
b, err := l.Render(got)
t.Errorf("path taken (err:%v):\n%s", err, b)
if c <= *maxWide && (*debug || *vdebug) {
t.Error(buf.String())
}
} else if c <= *maxWide && *vdebug {
t.Logf("Test %d:\n%s", i, buf.String())
}
}
}
}
type memory bool
func (m memory) String() string {
if m {
return "with"
}
return "without"
}
// samePath compares two paths for equality ignoring nodes that are nil.
func samePath(a, b []graph.Node) bool {
if len(a) != len(b) {
return false
}
for i, e := range a {
if e == nil || b[i] == nil {
continue
}
if e.ID() != b[i].ID() {
return false
}
}
return true
}
// weightOf return the weight of the path in g.
func weightOf(path []graph.Node, g graph.Weighted) float64 {
var w float64
if len(path) > 1 {
for p, n := range path[1:] {
ew, ok := g.Weight(path[p].ID(), n.ID())
if !ok {
return math.Inf(1)
}
w += ew
}
}
return w
}
// simpleWeightedEdgesOf returns the weighted edges in g corresponding to the given edges.
func simpleWeightedEdgesOf(g graph.Weighted, edges []graph.Edge) []simple.WeightedEdge {
w := make([]simple.WeightedEdge, len(edges))
for i, e := range edges {
w[i].F = e.From()
w[i].T = e.To()
ew, _ := g.Weight(e.From().ID(), e.To().ID())
w[i].W = ew
}
return w
}