mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00

Apply (with manual curation after the fact): * s/^T/U+1d40/g * s/^H/U+1d34/g * s/, {2,3}if / $1/g Some additional manual editing of odd formatting.
178 lines
5.5 KiB
Go
178 lines
5.5 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package testblas
|
|
|
|
import (
|
|
"fmt"
|
|
"math/cmplx"
|
|
"testing"
|
|
|
|
"golang.org/x/exp/rand"
|
|
"gonum.org/v1/gonum/blas"
|
|
)
|
|
|
|
type Zher2ker interface {
|
|
Zher2k(uplo blas.Uplo, trans blas.Transpose, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta float64, c []complex128, ldc int)
|
|
}
|
|
|
|
func Zher2kTest(t *testing.T, impl Zher2ker) {
|
|
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
|
|
for _, trans := range []blas.Transpose{blas.NoTrans, blas.ConjTrans} {
|
|
name := uploString(uplo) + "-" + transString(trans)
|
|
t.Run(name, func(t *testing.T) {
|
|
for _, n := range []int{0, 1, 2, 3, 4, 5} {
|
|
for _, k := range []int{0, 1, 2, 3, 4, 5, 7} {
|
|
zher2kTest(t, impl, uplo, trans, n, k)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
func zher2kTest(t *testing.T, impl Zher2ker, uplo blas.Uplo, trans blas.Transpose, n, k int) {
|
|
const tol = 1e-13
|
|
|
|
rnd := rand.New(rand.NewSource(1))
|
|
|
|
row, col := n, k
|
|
if trans == blas.ConjTrans {
|
|
row, col = k, n
|
|
}
|
|
for _, lda := range []int{max(1, col), col + 2} {
|
|
for _, ldb := range []int{max(1, col), col + 3} {
|
|
for _, ldc := range []int{max(1, n), n + 4} {
|
|
for _, alpha := range []complex128{0, 1, complex(0.7, -0.9)} {
|
|
for _, beta := range []float64{0, 1, 1.3} {
|
|
// Allocate the matrix A and fill it with random numbers.
|
|
a := make([]complex128, row*lda)
|
|
for i := range a {
|
|
a[i] = rndComplex128(rnd)
|
|
}
|
|
// Create a copy of A for checking that
|
|
// Zher2k does not modify A.
|
|
aCopy := make([]complex128, len(a))
|
|
copy(aCopy, a)
|
|
|
|
// Allocate the matrix B and fill it with random numbers.
|
|
b := make([]complex128, row*ldb)
|
|
for i := range b {
|
|
b[i] = rndComplex128(rnd)
|
|
}
|
|
// Create a copy of B for checking that
|
|
// Zher2k does not modify B.
|
|
bCopy := make([]complex128, len(b))
|
|
copy(bCopy, b)
|
|
|
|
// Allocate the matrix C and fill it with random numbers.
|
|
c := make([]complex128, n*ldc)
|
|
for i := range c {
|
|
c[i] = rndComplex128(rnd)
|
|
}
|
|
if (alpha == 0 || k == 0) && beta == 1 {
|
|
// In case of a quick return
|
|
// zero out the diagonal.
|
|
for i := 0; i < n; i++ {
|
|
c[i*ldc+i] = complex(real(c[i*ldc+i]), 0)
|
|
}
|
|
}
|
|
// Create a copy of C for checking that
|
|
// Zher2k does not modify its triangle
|
|
// opposite to uplo.
|
|
cCopy := make([]complex128, len(c))
|
|
copy(cCopy, c)
|
|
// Create a copy of C expanded into a
|
|
// full hermitian matrix for computing
|
|
// the expected result using zmm.
|
|
cHer := make([]complex128, len(c))
|
|
copy(cHer, c)
|
|
if uplo == blas.Upper {
|
|
for i := 0; i < n; i++ {
|
|
cHer[i*ldc+i] = complex(real(cHer[i*ldc+i]), 0)
|
|
for j := i + 1; j < n; j++ {
|
|
cHer[j*ldc+i] = cmplx.Conj(cHer[i*ldc+j])
|
|
}
|
|
}
|
|
} else {
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < i; j++ {
|
|
cHer[j*ldc+i] = cmplx.Conj(cHer[i*ldc+j])
|
|
}
|
|
cHer[i*ldc+i] = complex(real(cHer[i*ldc+i]), 0)
|
|
}
|
|
}
|
|
|
|
// Compute the expected result using an internal Zgemm implementation.
|
|
var want []complex128
|
|
if trans == blas.NoTrans {
|
|
// C = alpha*A*Bᴴ + conj(alpha)*B*Aᴴ + beta*C
|
|
tmp := zmm(blas.NoTrans, blas.ConjTrans, n, n, k, alpha, a, lda, b, ldb, complex(beta, 0), cHer, ldc)
|
|
want = zmm(blas.NoTrans, blas.ConjTrans, n, n, k, cmplx.Conj(alpha), b, ldb, a, lda, 1, tmp, ldc)
|
|
} else {
|
|
// C = alpha*Aᴴ*B + conj(alpha)*Bᴴ*A + beta*C
|
|
tmp := zmm(blas.ConjTrans, blas.NoTrans, n, n, k, alpha, a, lda, b, ldb, complex(beta, 0), cHer, ldc)
|
|
want = zmm(blas.ConjTrans, blas.NoTrans, n, n, k, cmplx.Conj(alpha), b, ldb, a, lda, 1, tmp, ldc)
|
|
}
|
|
|
|
// Compute the result using Zher2k.
|
|
impl.Zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
|
|
|
|
prefix := fmt.Sprintf("n=%v,k=%v,lda=%v,ldb=%v,ldc=%v,alpha=%v,beta=%v", n, k, lda, ldb, ldc, alpha, beta)
|
|
|
|
if !zsame(a, aCopy) {
|
|
t.Errorf("%v: unexpected modification of A", prefix)
|
|
continue
|
|
}
|
|
if !zsame(b, bCopy) {
|
|
t.Errorf("%v: unexpected modification of B", prefix)
|
|
continue
|
|
}
|
|
if uplo == blas.Upper && !zSameLowerTri(n, c, ldc, cCopy, ldc) {
|
|
t.Errorf("%v: unexpected modification in lower triangle of C", prefix)
|
|
continue
|
|
}
|
|
if uplo == blas.Lower && !zSameUpperTri(n, c, ldc, cCopy, ldc) {
|
|
t.Errorf("%v: unexpected modification in upper triangle of C", prefix)
|
|
continue
|
|
}
|
|
|
|
// Check that the diagonal of C has only real elements.
|
|
hasRealDiag := true
|
|
for i := 0; i < n; i++ {
|
|
if imag(c[i*ldc+i]) != 0 {
|
|
hasRealDiag = false
|
|
break
|
|
}
|
|
}
|
|
if !hasRealDiag {
|
|
t.Errorf("%v: diagonal of C has imaginary elements\ngot=%v", prefix, c)
|
|
continue
|
|
}
|
|
|
|
// Expand C into a full hermitian matrix
|
|
// for comparison with the result from zmm.
|
|
if uplo == blas.Upper {
|
|
for i := 0; i < n-1; i++ {
|
|
for j := i + 1; j < n; j++ {
|
|
c[j*ldc+i] = cmplx.Conj(c[i*ldc+j])
|
|
}
|
|
}
|
|
} else {
|
|
for i := 1; i < n; i++ {
|
|
for j := 0; j < i; j++ {
|
|
c[j*ldc+i] = cmplx.Conj(c[i*ldc+j])
|
|
}
|
|
}
|
|
}
|
|
if !zEqualApprox(c, want, tol) {
|
|
t.Errorf("%v: unexpected result\nwant=%v\ngot= %v", prefix, want, c)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|