Files
gonum/graph/formats/dot/ast/ast.go
Dan Kortschak b34a300801 all: fix capitalisation of Gonum
This fixes the capitalisation of Gonum where it refers to the project rather
than the GitHub organisation or repository. The text of CONTRIBUTORS also
is fixed to reflect the reality that contributors may have contributed to
other repositories within the project.
2019-11-16 21:25:28 +10:30

410 lines
8.8 KiB
Go

// This file is dual licensed under CC0 and The Gonum License.
//
// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// Copyright ©2017 Robin Eklind.
// This file is made available under a Creative Commons CC0 1.0
// Universal Public Domain Dedication.
package ast
import (
"bytes"
"fmt"
)
// === [ File ] ================================================================
// A File represents a DOT file.
//
// Examples.
//
// digraph G {
// A -> B
// }
// graph H {
// C - D
// }
type File struct {
// Graphs.
Graphs []*Graph
}
// String returns the string representation of the file.
func (f *File) String() string {
buf := new(bytes.Buffer)
for i, graph := range f.Graphs {
if i != 0 {
buf.WriteString("\n")
}
buf.WriteString(graph.String())
}
return buf.String()
}
// === [ Graphs ] ==============================================================
// A Graph represents a directed or an undirected graph.
//
// Examples.
//
// digraph G {
// A -> {B C}
// B -> C
// }
type Graph struct {
// Strict graph; multi-edges forbidden.
Strict bool
// Directed graph.
Directed bool
// Graph ID; or empty if anonymous.
ID string
// Graph statements.
Stmts []Stmt
}
// String returns the string representation of the graph.
func (g *Graph) String() string {
buf := new(bytes.Buffer)
if g.Strict {
buf.WriteString("strict ")
}
if g.Directed {
buf.WriteString("digraph ")
} else {
buf.WriteString("graph ")
}
if len(g.ID) > 0 {
fmt.Fprintf(buf, "%s ", g.ID)
}
buf.WriteString("{\n")
for _, stmt := range g.Stmts {
fmt.Fprintf(buf, "\t%s\n", stmt)
}
buf.WriteString("}")
return buf.String()
}
// === [ Statements ] ==========================================================
// A Stmt represents a statement, and has one of the following underlying types.
//
// *NodeStmt
// *EdgeStmt
// *AttrStmt
// *Attr
// *Subgraph
type Stmt interface {
fmt.Stringer
// isStmt ensures that only statements can be assigned to the Stmt interface.
isStmt()
}
// --- [ Node statement ] ------------------------------------------------------
// A NodeStmt represents a node statement.
//
// Examples.
//
// A [color=blue]
type NodeStmt struct {
// Node.
Node *Node
// Node attributes.
Attrs []*Attr
}
// String returns the string representation of the node statement.
func (e *NodeStmt) String() string {
buf := new(bytes.Buffer)
buf.WriteString(e.Node.String())
if len(e.Attrs) > 0 {
buf.WriteString(" [")
for i, attr := range e.Attrs {
if i != 0 {
buf.WriteString(" ")
}
buf.WriteString(attr.String())
}
buf.WriteString("]")
}
return buf.String()
}
// --- [ Edge statement ] ------------------------------------------------------
// An EdgeStmt represents an edge statement.
//
// Examples.
//
// A -> B
// A -> {B C}
// A -> B -> C
type EdgeStmt struct {
// Source vertex.
From Vertex
// Outgoing edge.
To *Edge
// Edge attributes.
Attrs []*Attr
}
// String returns the string representation of the edge statement.
func (e *EdgeStmt) String() string {
buf := new(bytes.Buffer)
fmt.Fprintf(buf, "%s %s", e.From, e.To)
if len(e.Attrs) > 0 {
buf.WriteString(" [")
for i, attr := range e.Attrs {
if i != 0 {
buf.WriteString(" ")
}
buf.WriteString(attr.String())
}
buf.WriteString("]")
}
return buf.String()
}
// An Edge represents an edge between two vertices.
type Edge struct {
// Directed edge.
Directed bool
// Destination vertex.
Vertex Vertex
// Outgoing edge; or nil if none.
To *Edge
}
// String returns the string representation of the edge.
func (e *Edge) String() string {
op := "--"
if e.Directed {
op = "->"
}
if e.To != nil {
return fmt.Sprintf("%s %s %s", op, e.Vertex, e.To)
}
return fmt.Sprintf("%s %s", op, e.Vertex)
}
// --- [ Attribute statement ] -------------------------------------------------
// An AttrStmt represents an attribute statement.
//
// Examples.
//
// graph [rankdir=LR]
// node [color=blue fillcolor=red]
// edge [minlen=1]
type AttrStmt struct {
// Graph component kind to which the attributes are assigned.
Kind Kind
// Attributes.
Attrs []*Attr
}
// String returns the string representation of the attribute statement.
func (a *AttrStmt) String() string {
buf := new(bytes.Buffer)
fmt.Fprintf(buf, "%s [", a.Kind)
for i, attr := range a.Attrs {
if i != 0 {
buf.WriteString(" ")
}
buf.WriteString(attr.String())
}
buf.WriteString("]")
return buf.String()
}
// Kind specifies the set of graph components to which attribute statements may
// be assigned.
type Kind uint
// Graph component kinds.
const (
GraphKind Kind = iota // graph
NodeKind // node
EdgeKind // edge
)
// String returns the string representation of the graph component kind.
func (k Kind) String() string {
switch k {
case GraphKind:
return "graph"
case NodeKind:
return "node"
case EdgeKind:
return "edge"
}
panic(fmt.Sprintf("invalid graph component kind (%d)", k))
}
// --- [ Attribute ] -----------------------------------------------------------
// An Attr represents an attribute.
//
// Examples.
//
// rank=same
type Attr struct {
// Attribute key.
Key string
// Attribute value.
Val string
}
// String returns the string representation of the attribute.
func (a *Attr) String() string {
return fmt.Sprintf("%s=%s", a.Key, a.Val)
}
// --- [ Subgraph ] ------------------------------------------------------------
// A Subgraph represents a subgraph vertex.
//
// Examples.
//
// subgraph S {A B C}
type Subgraph struct {
// Subgraph ID; or empty if none.
ID string
// Subgraph statements.
Stmts []Stmt
}
// String returns the string representation of the subgraph.
func (s *Subgraph) String() string {
buf := new(bytes.Buffer)
if len(s.ID) > 0 {
fmt.Fprintf(buf, "subgraph %s ", s.ID)
}
buf.WriteString("{")
for i, stmt := range s.Stmts {
if i != 0 {
buf.WriteString(" ")
}
buf.WriteString(stmt.String())
}
buf.WriteString("}")
return buf.String()
}
// isStmt ensures that only statements can be assigned to the Stmt interface.
func (*NodeStmt) isStmt() {}
func (*EdgeStmt) isStmt() {}
func (*AttrStmt) isStmt() {}
func (*Attr) isStmt() {}
func (*Subgraph) isStmt() {}
// === [ Vertices ] ============================================================
// A Vertex represents a vertex, and has one of the following underlying types.
//
// *Node
// *Subgraph
type Vertex interface {
fmt.Stringer
// isVertex ensures that only vertices can be assigned to the Vertex
// interface.
isVertex()
}
// --- [ Node identifier ] -----------------------------------------------------
// A Node represents a node vertex.
//
// Examples.
//
// A
// A:nw
type Node struct {
// Node ID.
ID string
// Node port; or nil if none.
Port *Port
}
// String returns the string representation of the node.
func (n *Node) String() string {
if n.Port != nil {
return fmt.Sprintf("%s%s", n.ID, n.Port)
}
return n.ID
}
// A Port specifies where on a node an edge should be aimed.
type Port struct {
// Port ID; or empty if none.
ID string
// Compass point.
CompassPoint CompassPoint
}
// String returns the string representation of the port.
func (p *Port) String() string {
buf := new(bytes.Buffer)
if len(p.ID) > 0 {
fmt.Fprintf(buf, ":%s", p.ID)
}
if p.CompassPoint != CompassPointNone {
fmt.Fprintf(buf, ":%s", p.CompassPoint)
}
return buf.String()
}
// CompassPoint specifies the set of compass points.
type CompassPoint uint
// Compass points.
const (
CompassPointNone CompassPoint = iota //
CompassPointNorth // n
CompassPointNorthEast // ne
CompassPointEast // e
CompassPointSouthEast // se
CompassPointSouth // s
CompassPointSouthWest // sw
CompassPointWest // w
CompassPointNorthWest // nw
CompassPointCenter // c
CompassPointDefault // _
)
// String returns the string representation of the compass point.
func (c CompassPoint) String() string {
switch c {
case CompassPointNone:
return ""
case CompassPointNorth:
return "n"
case CompassPointNorthEast:
return "ne"
case CompassPointEast:
return "e"
case CompassPointSouthEast:
return "se"
case CompassPointSouth:
return "s"
case CompassPointSouthWest:
return "sw"
case CompassPointWest:
return "w"
case CompassPointNorthWest:
return "nw"
case CompassPointCenter:
return "c"
case CompassPointDefault:
return "_"
}
panic(fmt.Sprintf("invalid compass point (%d)", uint(c)))
}
// isVertex ensures that only vertices can be assigned to the Vertex interface.
func (*Node) isVertex() {}
func (*Subgraph) isVertex() {}