Files
gonum/graph/encoding/dot/decode.go
Dan Kortschak b34a300801 all: fix capitalisation of Gonum
This fixes the capitalisation of Gonum where it refers to the project rather
than the GitHub organisation or repository. The text of CONTRIBUTORS also
is fixed to reflect the reality that contributors may have contributed to
other repositories within the project.
2019-11-16 21:25:28 +10:30

528 lines
14 KiB
Go

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dot
import (
"fmt"
"strconv"
"strings"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/encoding"
"gonum.org/v1/gonum/graph/formats/dot"
"gonum.org/v1/gonum/graph/formats/dot/ast"
"gonum.org/v1/gonum/graph/internal/set"
)
// AttributeSetters is implemented by graph values that can set global
// DOT attributes.
type AttributeSetters interface {
// DOTAttributeSetters returns the global attribute setters.
DOTAttributeSetters() (graph, node, edge encoding.AttributeSetter)
}
// DOTIDSetter is implemented by types that can set a DOT ID.
type DOTIDSetter interface {
SetDOTID(id string)
}
// PortSetter is implemented by graph.Edge and graph.Line that can set
// the DOT port and compass directions of an edge.
type PortSetter interface {
// SetFromPort sets the From port and
// compass direction of the receiver.
SetFromPort(port, compass string) error
// SetToPort sets the To port and compass
// direction of the receiver.
SetToPort(port, compass string) error
}
// Unmarshal parses the Graphviz DOT-encoded data and stores the result in dst.
// If the number of graphs encoded in data is not one, an error is returned and
// dst will hold the first graph in data.
//
// Attributes and IDs are unquoted during unmarshalling if appropriate.
func Unmarshal(data []byte, dst encoding.Builder) error {
file, err := dot.ParseBytes(data)
if err != nil {
return err
}
err = copyGraph(dst, file.Graphs[0])
if err == nil && len(file.Graphs) != 1 {
err = fmt.Errorf("invalid number of graphs; expected 1, got %d", len(file.Graphs))
}
return err
}
// UnmarshalMulti parses the Graphviz DOT-encoded data as a multigraph and
// stores the result in dst.
// If the number of graphs encoded in data is not one, an error is returned and
// dst will hold the first graph in data.
//
// Attributes and IDs are unquoted during unmarshalling if appropriate.
func UnmarshalMulti(data []byte, dst encoding.MultiBuilder) error {
file, err := dot.ParseBytes(data)
if err != nil {
return err
}
err = copyMultigraph(dst, file.Graphs[0])
if err == nil && len(file.Graphs) != 1 {
err = fmt.Errorf("invalid number of graphs; expected 1, got %d", len(file.Graphs))
}
return err
}
// copyGraph copies the nodes and edges from the Graphviz AST source graph to
// the destination graph. Edge direction is maintained if present.
func copyGraph(dst encoding.Builder, src *ast.Graph) (err error) {
defer func() {
switch e := recover().(type) {
case nil:
case error:
err = e
default:
panic(e)
}
}()
gen := &simpleGraph{
generator: generator{
directed: src.Directed,
ids: make(map[string]graph.Node),
},
}
if dst, ok := dst.(DOTIDSetter); ok {
dst.SetDOTID(unquoteID(src.ID))
}
if a, ok := dst.(AttributeSetters); ok {
gen.graphAttr, gen.nodeAttr, gen.edgeAttr = a.DOTAttributeSetters()
}
for _, stmt := range src.Stmts {
gen.addStmt(dst, stmt)
}
return err
}
// copyMultigraph copies the nodes and edges from the Graphviz AST source graph to
// the destination graph. Edge direction is maintained if present.
func copyMultigraph(dst encoding.MultiBuilder, src *ast.Graph) (err error) {
defer func() {
switch e := recover().(type) {
case nil:
case error:
err = e
default:
panic(e)
}
}()
gen := &multiGraph{
generator: generator{
directed: src.Directed,
ids: make(map[string]graph.Node),
},
}
if dst, ok := dst.(DOTIDSetter); ok {
dst.SetDOTID(unquoteID(src.ID))
}
if a, ok := dst.(AttributeSetters); ok {
gen.graphAttr, gen.nodeAttr, gen.edgeAttr = a.DOTAttributeSetters()
}
for _, stmt := range src.Stmts {
gen.addStmt(dst, stmt)
}
return err
}
// A generator keeps track of the information required for generating a Gonum
// graph from a dot AST graph.
type generator struct {
// Directed graph.
directed bool
// Map from dot AST node ID to Gonum node.
ids map[string]graph.Node
// Nodes processed within the context of a subgraph, that is to be used as a
// vertex of an edge.
subNodes []graph.Node
// Stack of start indices into the subgraph node slice. The top element
// corresponds to the start index of the active (or inner-most) subgraph.
subStart []int
// graphAttr, nodeAttr and edgeAttr are global graph attributes.
graphAttr, nodeAttr, edgeAttr encoding.AttributeSetter
}
// node returns the Gonum node corresponding to the given dot AST node ID,
// generating a new such node if none exist.
func (gen *generator) node(dst graph.NodeAdder, id string) graph.Node {
if n, ok := gen.ids[id]; ok {
return n
}
n := dst.NewNode()
if n, ok := n.(DOTIDSetter); ok {
n.SetDOTID(unquoteID(id))
}
dst.AddNode(n)
gen.ids[id] = n
// Check if within the context of a subgraph, that is to be used as a vertex
// of an edge.
if gen.isInSubgraph() {
// Append node processed within the context of a subgraph, that is to be
// used as a vertex of an edge
gen.appendSubgraphNode(n)
}
return n
}
type simpleGraph struct{ generator }
// addStmt adds the given statement to the graph.
func (gen *simpleGraph) addStmt(dst encoding.Builder, stmt ast.Stmt) {
switch stmt := stmt.(type) {
case *ast.NodeStmt:
n, ok := gen.node(dst, stmt.Node.ID).(encoding.AttributeSetter)
if !ok {
return
}
for _, attr := range stmt.Attrs {
a := encoding.Attribute{
Key: unquoteID(attr.Key),
Value: unquoteID(attr.Val),
}
if err := n.SetAttribute(a); err != nil {
panic(fmt.Errorf("unable to unmarshal node DOT attribute (%s=%s): %v", a.Key, a.Value, err))
}
}
case *ast.EdgeStmt:
gen.addEdgeStmt(dst, stmt)
case *ast.AttrStmt:
var n encoding.AttributeSetter
var dst string
switch stmt.Kind {
case ast.GraphKind:
if gen.graphAttr == nil {
return
}
n = gen.graphAttr
dst = "graph"
case ast.NodeKind:
if gen.nodeAttr == nil {
return
}
n = gen.nodeAttr
dst = "node"
case ast.EdgeKind:
if gen.edgeAttr == nil {
return
}
n = gen.edgeAttr
dst = "edge"
default:
panic("unreachable")
}
for _, attr := range stmt.Attrs {
a := encoding.Attribute{
Key: unquoteID(attr.Key),
Value: unquoteID(attr.Val),
}
if err := n.SetAttribute(a); err != nil {
panic(fmt.Errorf("unable to unmarshal global %s DOT attribute (%s=%s): %v", dst, a.Key, a.Value, err))
}
}
case *ast.Attr:
// ignore.
case *ast.Subgraph:
for _, stmt := range stmt.Stmts {
gen.addStmt(dst, stmt)
}
default:
panic(fmt.Sprintf("unknown statement type %T", stmt))
}
}
// basicEdge is an edge without the Reverse method to
// allow satisfaction by both graph.Edge and graph.Line.
type basicEdge interface {
From() graph.Node
To() graph.Node
}
// applyPortsToEdge applies the available port metadata from an ast.Edge
// to a graph.Edge
func applyPortsToEdge(from ast.Vertex, to *ast.Edge, edge basicEdge) {
if ps, isPortSetter := edge.(PortSetter); isPortSetter {
if n, vertexIsNode := from.(*ast.Node); vertexIsNode {
if n.Port != nil {
err := ps.SetFromPort(unquoteID(n.Port.ID), n.Port.CompassPoint.String())
if err != nil {
panic(fmt.Errorf("unable to unmarshal edge port (:%s:%s)", n.Port.ID, n.Port.CompassPoint.String()))
}
}
}
if n, vertexIsNode := to.Vertex.(*ast.Node); vertexIsNode {
if n.Port != nil {
err := ps.SetToPort(unquoteID(n.Port.ID), n.Port.CompassPoint.String())
if err != nil {
panic(fmt.Errorf("unable to unmarshal edge DOT port (:%s:%s)", n.Port.ID, n.Port.CompassPoint.String()))
}
}
}
}
}
// addEdgeStmt adds the given edge statement to the graph.
func (gen *simpleGraph) addEdgeStmt(dst encoding.Builder, stmt *ast.EdgeStmt) {
fs := gen.addVertex(dst, stmt.From)
ts := gen.addEdge(dst, stmt.To, stmt.Attrs)
for _, f := range fs {
for _, t := range ts {
edge := dst.NewEdge(f, t)
dst.SetEdge(edge)
applyPortsToEdge(stmt.From, stmt.To, edge)
addEdgeAttrs(edge, stmt.Attrs)
}
}
}
// addVertex adds the given vertex to the graph, and returns its set of nodes.
func (gen *simpleGraph) addVertex(dst encoding.Builder, v ast.Vertex) []graph.Node {
switch v := v.(type) {
case *ast.Node:
n := gen.node(dst, v.ID)
return []graph.Node{n}
case *ast.Subgraph:
gen.pushSubgraph()
for _, stmt := range v.Stmts {
gen.addStmt(dst, stmt)
}
return gen.popSubgraph()
default:
panic(fmt.Sprintf("unknown vertex type %T", v))
}
}
// addEdge adds the given edge to the graph, and returns its set of nodes.
func (gen *simpleGraph) addEdge(dst encoding.Builder, to *ast.Edge, attrs []*ast.Attr) []graph.Node {
if !gen.directed && to.Directed {
panic(fmt.Errorf("directed edge to %v in undirected graph", to.Vertex))
}
fs := gen.addVertex(dst, to.Vertex)
if to.To != nil {
ts := gen.addEdge(dst, to.To, attrs)
for _, f := range fs {
for _, t := range ts {
edge := dst.NewEdge(f, t)
dst.SetEdge(edge)
applyPortsToEdge(to.Vertex, to.To, edge)
addEdgeAttrs(edge, attrs)
}
}
}
return fs
}
// pushSubgraph pushes the node start index of the active subgraph onto the
// stack.
func (gen *generator) pushSubgraph() {
gen.subStart = append(gen.subStart, len(gen.subNodes))
}
// popSubgraph pops the node start index of the active subgraph from the stack,
// and returns the nodes processed since.
func (gen *generator) popSubgraph() []graph.Node {
// Get nodes processed since the subgraph became active.
start := gen.subStart[len(gen.subStart)-1]
// TODO: Figure out a better way to store subgraph nodes, so that duplicates
// may not occur.
nodes := unique(gen.subNodes[start:])
// Remove subgraph from stack.
gen.subStart = gen.subStart[:len(gen.subStart)-1]
if len(gen.subStart) == 0 {
// Remove subgraph nodes when the bottom-most subgraph has been processed.
gen.subNodes = gen.subNodes[:0]
}
return nodes
}
// unique returns the set of unique nodes contained within ns.
func unique(ns []graph.Node) []graph.Node {
var nodes []graph.Node
seen := make(set.Int64s)
for _, n := range ns {
id := n.ID()
if seen.Has(id) {
// skip duplicate node
continue
}
seen.Add(id)
nodes = append(nodes, n)
}
return nodes
}
// isInSubgraph reports whether the active context is within a subgraph, that is
// to be used as a vertex of an edge.
func (gen *generator) isInSubgraph() bool {
return len(gen.subStart) > 0
}
// appendSubgraphNode appends the given node to the slice of nodes processed
// within the context of a subgraph.
func (gen *generator) appendSubgraphNode(n graph.Node) {
gen.subNodes = append(gen.subNodes, n)
}
type multiGraph struct{ generator }
// addStmt adds the given statement to the multigraph.
func (gen *multiGraph) addStmt(dst encoding.MultiBuilder, stmt ast.Stmt) {
switch stmt := stmt.(type) {
case *ast.NodeStmt:
n, ok := gen.node(dst, stmt.Node.ID).(encoding.AttributeSetter)
if !ok {
return
}
for _, attr := range stmt.Attrs {
a := encoding.Attribute{
Key: unquoteID(attr.Key),
Value: unquoteID(attr.Val),
}
if err := n.SetAttribute(a); err != nil {
panic(fmt.Errorf("unable to unmarshal node DOT attribute (%s=%s): %v", a.Key, a.Value, err))
}
}
case *ast.EdgeStmt:
gen.addEdgeStmt(dst, stmt)
case *ast.AttrStmt:
var n encoding.AttributeSetter
var dst string
switch stmt.Kind {
case ast.GraphKind:
if gen.graphAttr == nil {
return
}
n = gen.graphAttr
dst = "graph"
case ast.NodeKind:
if gen.nodeAttr == nil {
return
}
n = gen.nodeAttr
dst = "node"
case ast.EdgeKind:
if gen.edgeAttr == nil {
return
}
n = gen.edgeAttr
dst = "edge"
default:
panic("unreachable")
}
for _, attr := range stmt.Attrs {
a := encoding.Attribute{
Key: unquoteID(attr.Key),
Value: unquoteID(attr.Val),
}
if err := n.SetAttribute(a); err != nil {
panic(fmt.Errorf("unable to unmarshal global %s DOT attribute (%s=%s): %v", dst, a.Key, a.Value, err))
}
}
case *ast.Attr:
// ignore.
case *ast.Subgraph:
for _, stmt := range stmt.Stmts {
gen.addStmt(dst, stmt)
}
default:
panic(fmt.Sprintf("unknown statement type %T", stmt))
}
}
// addEdgeStmt adds the given edge statement to the multigraph.
func (gen *multiGraph) addEdgeStmt(dst encoding.MultiBuilder, stmt *ast.EdgeStmt) {
fs := gen.addVertex(dst, stmt.From)
ts := gen.addLine(dst, stmt.To, stmt.Attrs)
for _, f := range fs {
for _, t := range ts {
edge := dst.NewLine(f, t)
dst.SetLine(edge)
applyPortsToEdge(stmt.From, stmt.To, edge)
addEdgeAttrs(edge, stmt.Attrs)
}
}
}
// addVertex adds the given vertex to the multigraph, and returns its set of nodes.
func (gen *multiGraph) addVertex(dst encoding.MultiBuilder, v ast.Vertex) []graph.Node {
switch v := v.(type) {
case *ast.Node:
n := gen.node(dst, v.ID)
return []graph.Node{n}
case *ast.Subgraph:
gen.pushSubgraph()
for _, stmt := range v.Stmts {
gen.addStmt(dst, stmt)
}
return gen.popSubgraph()
default:
panic(fmt.Sprintf("unknown vertex type %T", v))
}
}
// addLine adds the given edge to the multigraph, and returns its set of nodes.
func (gen *multiGraph) addLine(dst encoding.MultiBuilder, to *ast.Edge, attrs []*ast.Attr) []graph.Node {
if !gen.directed && to.Directed {
panic(fmt.Errorf("directed edge to %v in undirected graph", to.Vertex))
}
fs := gen.addVertex(dst, to.Vertex)
if to.To != nil {
ts := gen.addLine(dst, to.To, attrs)
for _, f := range fs {
for _, t := range ts {
edge := dst.NewLine(f, t)
dst.SetLine(edge)
applyPortsToEdge(to.Vertex, to.To, edge)
addEdgeAttrs(edge, attrs)
}
}
}
return fs
}
// addEdgeAttrs adds the attributes to the given edge.
func addEdgeAttrs(edge basicEdge, attrs []*ast.Attr) {
e, ok := edge.(encoding.AttributeSetter)
if !ok {
return
}
for _, attr := range attrs {
a := encoding.Attribute{
Key: unquoteID(attr.Key),
Value: unquoteID(attr.Val),
}
if err := e.SetAttribute(a); err != nil {
panic(fmt.Errorf("unable to unmarshal edge DOT attribute (%s=%s): %v", a.Key, a.Value, err))
}
}
}
// unquoteID unquotes the given string if needed in the context of an ID. If s
// is not already quoted the original string is returned.
func unquoteID(s string) string {
// To make round-trips idempotent, don't unquote quoted HTML-like strings
//
// /^"<.*>"$/
if len(s) >= 4 && strings.HasPrefix(s, `"<`) && strings.HasSuffix(s, `>"`) {
return s
}
// Unquote quoted string if possible.
if t, err := strconv.Unquote(s); err == nil {
return t
}
// On error, either s is not quoted or s is quoted but contains invalid
// characters, in both cases we return the original string rather than
// panicking.
return s
}