mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 18:42:45 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			142 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			142 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package testlapack
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| 	"math/rand"
 | |
| 	"testing"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/blas"
 | |
| 	"gonum.org/v1/gonum/blas/blas64"
 | |
| )
 | |
| 
 | |
| type Dlatrser interface {
 | |
| 	Dlatrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, normin bool, n int, a []float64, lda int, x []float64, cnorm []float64) (scale float64)
 | |
| }
 | |
| 
 | |
| func DlatrsTest(t *testing.T, impl Dlatrser) {
 | |
| 	rnd := rand.New(rand.NewSource(1))
 | |
| 	for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
 | |
| 		for _, trans := range []blas.Transpose{blas.Trans, blas.NoTrans} {
 | |
| 			for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 10, 20, 50, 100} {
 | |
| 				for _, lda := range []int{n, 2*n + 1} {
 | |
| 					lda = max(1, lda)
 | |
| 					imats := []int{7, 11, 12, 13, 14, 15, 16, 17, 18}
 | |
| 					if n < 6 {
 | |
| 						imats = append(imats, 19)
 | |
| 					}
 | |
| 					for _, imat := range imats {
 | |
| 						testDlatrs(t, impl, imat, uplo, trans, n, lda, rnd)
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func testDlatrs(t *testing.T, impl Dlatrser, imat int, uplo blas.Uplo, trans blas.Transpose, n, lda int, rnd *rand.Rand) {
 | |
| 	const tol = 1e-14
 | |
| 
 | |
| 	a := nanSlice(n * lda)
 | |
| 	b := nanSlice(n)
 | |
| 	work := make([]float64, 3*n)
 | |
| 
 | |
| 	// Generate triangular test matrix and right hand side.
 | |
| 	diag := dlattr(imat, uplo, trans, n, a, lda, b, work, rnd)
 | |
| 	if imat <= 10 {
 | |
| 		// b has not been generated.
 | |
| 		dlarnv(b, 3, rnd)
 | |
| 	}
 | |
| 
 | |
| 	cnorm := nanSlice(n)
 | |
| 	x := make([]float64, n)
 | |
| 
 | |
| 	// Call Dlatrs with normin=false.
 | |
| 	copy(x, b)
 | |
| 	scale := impl.Dlatrs(uplo, trans, diag, false, n, a, lda, x, cnorm)
 | |
| 	prefix := fmt.Sprintf("Case imat=%v (n=%v,lda=%v,trans=%v,uplo=%v,diag=%v", imat, n, lda, trans, uplo, diag)
 | |
| 	for i, v := range cnorm {
 | |
| 		if math.IsNaN(v) {
 | |
| 			t.Errorf("%v: cnorm[%v] not computed (scale=%v,normin=false)", prefix, i, scale)
 | |
| 		}
 | |
| 	}
 | |
| 	resid, hasNaN := dlatrsResidual(uplo, trans, diag, n, a, lda, scale, cnorm, x, b, work[:n])
 | |
| 	if hasNaN {
 | |
| 		t.Errorf("%v: unexpected NaN (scale=%v,normin=false)", prefix, scale)
 | |
| 	} else if resid > tol {
 | |
| 		t.Errorf("%v: residual %v too large (scale=%v,normin=false)", prefix, scale)
 | |
| 	}
 | |
| 
 | |
| 	// Call Dlatrs with normin=true because cnorm has been filled.
 | |
| 	copy(x, b)
 | |
| 	scale = impl.Dlatrs(uplo, trans, diag, true, n, a, lda, x, cnorm)
 | |
| 	resid, hasNaN = dlatrsResidual(uplo, trans, diag, n, a, lda, scale, cnorm, x, b, work[:n])
 | |
| 	if hasNaN {
 | |
| 		t.Errorf("%v: unexpected NaN (scale=%v,normin=true)", prefix, scale)
 | |
| 	} else if resid > tol {
 | |
| 		t.Errorf("%v: residual %v too large (scale=%v,normin=true)", prefix, scale)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // dlatrsResidual returns norm(trans(A)*x-scale*b) / (norm(trans(A))*norm(x)*eps)
 | |
| // and whether NaN has been encountered in the process.
 | |
| func dlatrsResidual(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, a []float64, lda int, scale float64, cnorm []float64, x, b, work []float64) (resid float64, hasNaN bool) {
 | |
| 	if n == 0 {
 | |
| 		return 0, false
 | |
| 	}
 | |
| 
 | |
| 	// Compute the norm of the triangular matrix A using the column norms
 | |
| 	// already computed by Dlatrs.
 | |
| 	var tnorm float64
 | |
| 	if diag == blas.NonUnit {
 | |
| 		for j := 0; j < n; j++ {
 | |
| 			tnorm = math.Max(tnorm, math.Abs(a[j*lda+j])+cnorm[j])
 | |
| 		}
 | |
| 	} else {
 | |
| 		for j := 0; j < n; j++ {
 | |
| 			tnorm = math.Max(tnorm, 1+cnorm[j])
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eps := dlamchE
 | |
| 	smlnum := dlamchS
 | |
| 	bi := blas64.Implementation()
 | |
| 
 | |
| 	// Compute norm(trans(A)*x-scale*b) / (norm(trans(A))*norm(x)*eps)
 | |
| 	copy(work, x)
 | |
| 	ix := bi.Idamax(n, work, 1)
 | |
| 	xnorm := math.Max(1, math.Abs(work[ix]))
 | |
| 	xscal := 1 / xnorm / float64(n)
 | |
| 	bi.Dscal(n, xscal, work, 1)
 | |
| 	bi.Dtrmv(uplo, trans, diag, n, a, lda, work, 1)
 | |
| 	bi.Daxpy(n, -scale*xscal, b, 1, work, 1)
 | |
| 	for _, v := range work {
 | |
| 		if math.IsNaN(v) {
 | |
| 			return 1 / eps, true
 | |
| 		}
 | |
| 	}
 | |
| 	ix = bi.Idamax(n, work, 1)
 | |
| 	resid = math.Abs(work[ix])
 | |
| 	ix = bi.Idamax(n, x, 1)
 | |
| 	xnorm = math.Abs(x[ix])
 | |
| 	if resid*smlnum <= xnorm {
 | |
| 		if xnorm > 0 {
 | |
| 			resid /= xnorm
 | |
| 		}
 | |
| 	} else if resid > 0 {
 | |
| 		resid = 1 / eps
 | |
| 	}
 | |
| 	if resid*smlnum <= tnorm {
 | |
| 		if tnorm > 0 {
 | |
| 			resid /= tnorm
 | |
| 		}
 | |
| 	} else if resid > 0 {
 | |
| 		resid = 1 / eps
 | |
| 	}
 | |
| 	return resid, false
 | |
| }
 | 
