mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package native
 | |
| 
 | |
| import (
 | |
| 	"gonum.org/v1/gonum/blas"
 | |
| 	"gonum.org/v1/gonum/blas/blas64"
 | |
| )
 | |
| 
 | |
| // Dpotrf computes the Cholesky decomposition of the symmetric positive definite
 | |
| // matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
 | |
| // and a = U^T U is stored in place into a. If ul == blas.Lower, then a = L L^T
 | |
| // is computed and stored in-place into a. If a is not positive definite, false
 | |
| // is returned. This is the blocked version of the algorithm.
 | |
| func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
 | |
| 	if ul != blas.Upper && ul != blas.Lower {
 | |
| 		panic(badUplo)
 | |
| 	}
 | |
| 	checkMatrix(n, n, a, lda)
 | |
| 
 | |
| 	if n == 0 {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	nb := impl.Ilaenv(1, "DPOTRF", string(ul), n, -1, -1, -1)
 | |
| 	if nb <= 1 || n <= nb {
 | |
| 		return impl.Dpotf2(ul, n, a, lda)
 | |
| 	}
 | |
| 	bi := blas64.Implementation()
 | |
| 	if ul == blas.Upper {
 | |
| 		for j := 0; j < n; j += nb {
 | |
| 			jb := min(nb, n-j)
 | |
| 			bi.Dsyrk(blas.Upper, blas.Trans, jb, j,
 | |
| 				-1, a[j:], lda,
 | |
| 				1, a[j*lda+j:], lda)
 | |
| 			ok = impl.Dpotf2(blas.Upper, jb, a[j*lda+j:], lda)
 | |
| 			if !ok {
 | |
| 				return ok
 | |
| 			}
 | |
| 			if j+jb < n {
 | |
| 				bi.Dgemm(blas.Trans, blas.NoTrans, jb, n-j-jb, j,
 | |
| 					-1, a[j:], lda, a[j+jb:], lda,
 | |
| 					1, a[j*lda+j+jb:], lda)
 | |
| 				bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, jb, n-j-jb,
 | |
| 					1, a[j*lda+j:], lda,
 | |
| 					a[j*lda+j+jb:], lda)
 | |
| 			}
 | |
| 		}
 | |
| 		return true
 | |
| 	}
 | |
| 	for j := 0; j < n; j += nb {
 | |
| 		jb := min(nb, n-j)
 | |
| 		bi.Dsyrk(blas.Lower, blas.NoTrans, jb, j,
 | |
| 			-1, a[j*lda:], lda,
 | |
| 			1, a[j*lda+j:], lda)
 | |
| 		ok := impl.Dpotf2(blas.Lower, jb, a[j*lda+j:], lda)
 | |
| 		if !ok {
 | |
| 			return ok
 | |
| 		}
 | |
| 		if j+jb < n {
 | |
| 			bi.Dgemm(blas.NoTrans, blas.Trans, n-j-jb, jb, j,
 | |
| 				-1, a[(j+jb)*lda:], lda, a[j*lda:], lda,
 | |
| 				1, a[(j+jb)*lda+j:], lda)
 | |
| 			bi.Dtrsm(blas.Right, blas.Lower, blas.Trans, blas.NonUnit, n-j-jb, jb,
 | |
| 				1, a[j*lda+j:], lda,
 | |
| 				a[(j+jb)*lda+j:], lda)
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | 
