mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import "gonum.org/v1/gonum/blas"
 | ||
| 
 | ||
| // Dormr2 multiplies a general matrix C by an orthogonal matrix from a RQ factorization
 | ||
| // determined by Dgerqf.
 | ||
| //  C = Q * C    if side == blas.Left and trans == blas.NoTrans
 | ||
| //  C = Q^T * C  if side == blas.Left and trans == blas.Trans
 | ||
| //  C = C * Q    if side == blas.Right and trans == blas.NoTrans
 | ||
| //  C = C * Q^T  if side == blas.Right and trans == blas.Trans
 | ||
| // If side == blas.Left, a is a matrix of size k×m, and if side == blas.Right
 | ||
| // a is of size k×n.
 | ||
| //
 | ||
| // tau contains the Householder factors and is of length at least k and this function
 | ||
| // will panic otherwise.
 | ||
| //
 | ||
| // work is temporary storage of length at least n if side == blas.Left
 | ||
| // and at least m if side == blas.Right and this function will panic otherwise.
 | ||
| //
 | ||
| // Dormr2 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dormr2(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
 | ||
| 	if side != blas.Left && side != blas.Right {
 | ||
| 		panic(badSide)
 | ||
| 	}
 | ||
| 	if trans != blas.Trans && trans != blas.NoTrans {
 | ||
| 		panic(badTrans)
 | ||
| 	}
 | ||
| 
 | ||
| 	left := side == blas.Left
 | ||
| 	notran := trans == blas.NoTrans
 | ||
| 	if left {
 | ||
| 		if k > m {
 | ||
| 			panic(kGTM)
 | ||
| 		}
 | ||
| 		checkMatrix(k, m, a, lda)
 | ||
| 		if len(work) < n {
 | ||
| 			panic(badWork)
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		if k > n {
 | ||
| 			panic(kGTN)
 | ||
| 		}
 | ||
| 		checkMatrix(k, n, a, lda)
 | ||
| 		if len(work) < m {
 | ||
| 			panic(badWork)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if len(tau) < k {
 | ||
| 		panic(badTau)
 | ||
| 	}
 | ||
| 	checkMatrix(m, n, c, ldc)
 | ||
| 
 | ||
| 	if m == 0 || n == 0 || k == 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	if left {
 | ||
| 		if notran {
 | ||
| 			for i := k - 1; i >= 0; i-- {
 | ||
| 				aii := a[i*lda+(m-k+i)]
 | ||
| 				a[i*lda+(m-k+i)] = 1
 | ||
| 				impl.Dlarf(side, m-k+i+1, n, a[i*lda:], 1, tau[i], c, ldc, work)
 | ||
| 				a[i*lda+(m-k+i)] = aii
 | ||
| 			}
 | ||
| 			return
 | ||
| 		}
 | ||
| 		for i := 0; i < k; i++ {
 | ||
| 			aii := a[i*lda+(m-k+i)]
 | ||
| 			a[i*lda+(m-k+i)] = 1
 | ||
| 			impl.Dlarf(side, m-k+i+1, n, a[i*lda:], 1, tau[i], c, ldc, work)
 | ||
| 			a[i*lda+(m-k+i)] = aii
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 	if notran {
 | ||
| 		for i := 0; i < k; i++ {
 | ||
| 			aii := a[i*lda+(n-k+i)]
 | ||
| 			a[i*lda+(n-k+i)] = 1
 | ||
| 			impl.Dlarf(side, m, n-k+i+1, a[i*lda:], 1, tau[i], c, ldc, work)
 | ||
| 			a[i*lda+(n-k+i)] = aii
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 	for i := k - 1; i >= 0; i-- {
 | ||
| 		aii := a[i*lda+(n-k+i)]
 | ||
| 		a[i*lda+(n-k+i)] = 1
 | ||
| 		impl.Dlarf(side, m, n-k+i+1, a[i*lda:], 1, tau[i], c, ldc, work)
 | ||
| 		a[i*lda+(n-k+i)] = aii
 | ||
| 	}
 | ||
| }
 | 
