mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			131 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import (
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| // Dorgql generates the m×n matrix Q with orthonormal columns defined as the
 | ||
| // last n columns of a product of k elementary reflectors of order m
 | ||
| //  Q = H_{k-1} * ... * H_1 * H_0.
 | ||
| //
 | ||
| // It must hold that
 | ||
| //  0 <= k <= n <= m,
 | ||
| // and Dorgql will panic otherwise.
 | ||
| //
 | ||
| // On entry, the (n-k+i)-th column of A must contain the vector which defines
 | ||
| // the elementary reflector H_i, for i=0,...,k-1, and tau[i] must contain its
 | ||
| // scalar factor. On return, a contains the m×n matrix Q.
 | ||
| //
 | ||
| // tau must have length at least k, and Dorgql will panic otherwise.
 | ||
| //
 | ||
| // work must have length at least max(1,lwork), and lwork must be at least
 | ||
| // max(1,n), otherwise Dorgql will panic. For optimum performance lwork must
 | ||
| // be a sufficiently large multiple of n.
 | ||
| //
 | ||
| // If lwork == -1, instead of computing Dorgql the optimal work length is stored
 | ||
| // into work[0].
 | ||
| //
 | ||
| // Dorgql is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dorgql(m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
 | ||
| 	switch {
 | ||
| 	case n < 0:
 | ||
| 		panic(nLT0)
 | ||
| 	case m < n:
 | ||
| 		panic(mLTN)
 | ||
| 	case k < 0:
 | ||
| 		panic(kLT0)
 | ||
| 	case k > n:
 | ||
| 		panic(kGTN)
 | ||
| 	case lwork < max(1, n) && lwork != -1:
 | ||
| 		panic(badWork)
 | ||
| 	case len(work) < lwork:
 | ||
| 		panic(shortWork)
 | ||
| 	}
 | ||
| 	if lwork != -1 {
 | ||
| 		checkMatrix(m, n, a, lda)
 | ||
| 		if len(tau) < k {
 | ||
| 			panic(badTau)
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if n == 0 {
 | ||
| 		work[0] = 1
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	nb := impl.Ilaenv(1, "DORGQL", " ", m, n, k, -1)
 | ||
| 	if lwork == -1 {
 | ||
| 		work[0] = float64(n * nb)
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	nbmin := 2
 | ||
| 	var nx, ldwork int
 | ||
| 	iws := n
 | ||
| 	if nb > 1 && nb < k {
 | ||
| 		// Determine when to cross over from blocked to unblocked code.
 | ||
| 		nx = max(0, impl.Ilaenv(3, "DORGQL", " ", m, n, k, -1))
 | ||
| 		if nx < k {
 | ||
| 			// Determine if workspace is large enough for blocked code.
 | ||
| 			iws = n * nb
 | ||
| 			if lwork < iws {
 | ||
| 				// Not enough workspace to use optimal nb: reduce nb and determine
 | ||
| 				// the minimum value of nb.
 | ||
| 				nb = lwork / n
 | ||
| 				nbmin = max(2, impl.Ilaenv(2, "DORGQL", " ", m, n, k, -1))
 | ||
| 			}
 | ||
| 			ldwork = nb
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	var kk int
 | ||
| 	if nb >= nbmin && nb < k && nx < k {
 | ||
| 		// Use blocked code after the first block. The last kk columns are handled
 | ||
| 		// by the block method.
 | ||
| 		kk = min(k, ((k-nx+nb-1)/nb)*nb)
 | ||
| 
 | ||
| 		// Set A(m-kk:m, 0:n-kk) to zero.
 | ||
| 		for i := m - kk; i < m; i++ {
 | ||
| 			for j := 0; j < n-kk; j++ {
 | ||
| 				a[i*lda+j] = 0
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Use unblocked code for the first or only block.
 | ||
| 	impl.Dorg2l(m-kk, n-kk, k-kk, a, lda, tau, work)
 | ||
| 	if kk > 0 {
 | ||
| 		// Use blocked code.
 | ||
| 		for i := k - kk; i < k; i += nb {
 | ||
| 			ib := min(nb, k-i)
 | ||
| 			if n-k+i > 0 {
 | ||
| 				// Form the triangular factor of the block reflector
 | ||
| 				// H = H_{i+ib-1} * ... * H_{i+1} * H_i.
 | ||
| 				impl.Dlarft(lapack.Backward, lapack.ColumnWise, m-k+i+ib, ib,
 | ||
| 					a[n-k+i:], lda, tau[i:], work, ldwork)
 | ||
| 
 | ||
| 				// Apply H to A[0:m-k+i+ib, 0:n-k+i] from the left.
 | ||
| 				impl.Dlarfb(blas.Left, blas.NoTrans, lapack.Backward, lapack.ColumnWise,
 | ||
| 					m-k+i+ib, n-k+i, ib, a[n-k+i:], lda, work, ldwork,
 | ||
| 					a, lda, work[ib*ldwork:], ldwork)
 | ||
| 			}
 | ||
| 
 | ||
| 			// Apply H to rows 0:m-k+i+ib of current block.
 | ||
| 			impl.Dorg2l(m-k+i+ib, ib, ib, a[n-k+i:], lda, tau[i:], work)
 | ||
| 
 | ||
| 			// Set rows m-k+i+ib:m of current block to zero.
 | ||
| 			for j := n - k + i; j < n-k+i+ib; j++ {
 | ||
| 				for l := m - k + i + ib; l < m; l++ {
 | ||
| 					a[l*lda+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	work[0] = float64(iws)
 | ||
| }
 | 
