mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			94 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| // Dorghr generates an n×n orthogonal matrix Q which is defined as the product
 | ||
| // of ihi-ilo elementary reflectors:
 | ||
| //  Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
 | ||
| //
 | ||
| // a and lda represent an n×n matrix that contains the elementary reflectors, as
 | ||
| // returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix
 | ||
| // Q. Q will be equal to the identity matrix except in the submatrix
 | ||
| // Q[ilo+1:ihi+1,ilo+1:ihi+1].
 | ||
| //
 | ||
| // ilo and ihi must have the same values as in the previous call of Dgehrd. It
 | ||
| // must hold that
 | ||
| //  0 <= ilo <= ihi < n,  if n > 0,
 | ||
| //  ilo = 0, ihi = -1,    if n == 0.
 | ||
| //
 | ||
| // tau contains the scalar factors of the elementary reflectors, as returned by
 | ||
| // Dgehrd. tau must have length n-1.
 | ||
| //
 | ||
| // work must have length at least max(1,lwork) and lwork must be at least
 | ||
| // ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb
 | ||
| // is the optimal blocksize. On return, work[0] will contain the optimal value
 | ||
| // of lwork.
 | ||
| //
 | ||
| // If lwork == -1, instead of performing Dorghr, only the optimal value of lwork
 | ||
| // will be stored into work[0].
 | ||
| //
 | ||
| // If any requirement on input sizes is not met, Dorghr will panic.
 | ||
| //
 | ||
| // Dorghr is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
 | ||
| 	checkMatrix(n, n, a, lda)
 | ||
| 	nh := ihi - ilo
 | ||
| 	switch {
 | ||
| 	case ilo < 0 || max(1, n) <= ilo:
 | ||
| 		panic(badIlo)
 | ||
| 	case ihi < min(ilo, n-1) || n <= ihi:
 | ||
| 		panic(badIhi)
 | ||
| 	case lwork < max(1, nh) && lwork != -1:
 | ||
| 		panic(badWork)
 | ||
| 	case len(work) < max(1, lwork):
 | ||
| 		panic(shortWork)
 | ||
| 	}
 | ||
| 
 | ||
| 	lwkopt := max(1, nh) * impl.Ilaenv(1, "DORGQR", " ", nh, nh, nh, -1)
 | ||
| 	if lwork == -1 {
 | ||
| 		work[0] = float64(lwkopt)
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	// Quick return if possible.
 | ||
| 	if n == 0 {
 | ||
| 		work[0] = 1
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	// Shift the vectors which define the elementary reflectors one column
 | ||
| 	// to the right.
 | ||
| 	for i := ilo + 2; i < ihi+1; i++ {
 | ||
| 		copy(a[i*lda+ilo+1:i*lda+i], a[i*lda+ilo:i*lda+i-1])
 | ||
| 	}
 | ||
| 	// Set the first ilo+1 and the last n-ihi-1 rows and columns to those of
 | ||
| 	// the identity matrix.
 | ||
| 	for i := 0; i < ilo+1; i++ {
 | ||
| 		for j := 0; j < n; j++ {
 | ||
| 			a[i*lda+j] = 0
 | ||
| 		}
 | ||
| 		a[i*lda+i] = 1
 | ||
| 	}
 | ||
| 	for i := ilo + 1; i < ihi+1; i++ {
 | ||
| 		for j := 0; j <= ilo; j++ {
 | ||
| 			a[i*lda+j] = 0
 | ||
| 		}
 | ||
| 		for j := i; j < n; j++ {
 | ||
| 			a[i*lda+j] = 0
 | ||
| 		}
 | ||
| 	}
 | ||
| 	for i := ihi + 1; i < n; i++ {
 | ||
| 		for j := 0; j < n; j++ {
 | ||
| 			a[i*lda+j] = 0
 | ||
| 		}
 | ||
| 		a[i*lda+i] = 1
 | ||
| 	}
 | ||
| 	if nh > 0 {
 | ||
| 		// Generate Q[ilo+1:ihi+1,ilo+1:ihi+1].
 | ||
| 		impl.Dorgqr(nh, nh, nh, a[(ilo+1)*lda+ilo+1:], lda, tau[ilo:ihi], work, lwork)
 | ||
| 	}
 | ||
| 	work[0] = float64(lwkopt)
 | ||
| }
 | 
