mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			112 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| )
 | ||
| 
 | ||
| // Dlaqp2 computes a QR factorization with column pivoting of the block A[offset:m, 0:n]
 | ||
| // of the m×n matrix A. The block A[0:offset, 0:n] is accordingly pivoted, but not factorized.
 | ||
| //
 | ||
| // On exit, the upper triangle of block A[offset:m, 0:n] is the triangular factor obtained.
 | ||
| // The elements in block A[offset:m, 0:n] below the diagonal, together with tau, represent
 | ||
| // the orthogonal matrix Q as a product of elementary reflectors.
 | ||
| //
 | ||
| // offset is number of rows of the matrix A that must be pivoted but not factorized.
 | ||
| // offset must not be negative otherwise Dlaqp2 will panic.
 | ||
| //
 | ||
| // On exit, jpvt holds the permutation that was applied; the jth column of A*P was the
 | ||
| // jpvt[j] column of A. jpvt must have length n, otherwise Dlaqp2 will panic.
 | ||
| //
 | ||
| // On exit tau holds the scalar factors of the elementary reflectors. It must have length
 | ||
| // at least min(m-offset, n) otherwise Dlaqp2 will panic.
 | ||
| //
 | ||
| // vn1 and vn2 hold the partial and complete column norms respectively. They must have length n,
 | ||
| // otherwise Dlaqp2 will panic.
 | ||
| //
 | ||
| // work must have length n, otherwise Dlaqp2 will panic.
 | ||
| //
 | ||
| // Dlaqp2 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dlaqp2(m, n, offset int, a []float64, lda int, jpvt []int, tau, vn1, vn2, work []float64) {
 | ||
| 	checkMatrix(m, n, a, lda)
 | ||
| 	if len(jpvt) != n {
 | ||
| 		panic(badIpiv)
 | ||
| 	}
 | ||
| 	mn := min(m-offset, n)
 | ||
| 	if len(tau) < mn {
 | ||
| 		panic(badTau)
 | ||
| 	}
 | ||
| 	if len(vn1) < n {
 | ||
| 		panic(badVn1)
 | ||
| 	}
 | ||
| 	if len(vn2) < n {
 | ||
| 		panic(badVn2)
 | ||
| 	}
 | ||
| 	if len(work) < n {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 
 | ||
| 	tol3z := math.Sqrt(dlamchE)
 | ||
| 
 | ||
| 	bi := blas64.Implementation()
 | ||
| 
 | ||
| 	// Compute factorization.
 | ||
| 	for i := 0; i < mn; i++ {
 | ||
| 		offpi := offset + i
 | ||
| 
 | ||
| 		// Determine ith pivot column and swap if necessary.
 | ||
| 		p := i + bi.Idamax(n-i, vn1[i:], 1)
 | ||
| 		if p != i {
 | ||
| 			bi.Dswap(m, a[p:], lda, a[i:], lda)
 | ||
| 			jpvt[p], jpvt[i] = jpvt[i], jpvt[p]
 | ||
| 			vn1[p] = vn1[i]
 | ||
| 			vn2[p] = vn2[i]
 | ||
| 		}
 | ||
| 
 | ||
| 		// Generate elementary reflector H_i.
 | ||
| 		if offpi < m-1 {
 | ||
| 			a[offpi*lda+i], tau[i] = impl.Dlarfg(m-offpi, a[offpi*lda+i], a[(offpi+1)*lda+i:], lda)
 | ||
| 		} else {
 | ||
| 			tau[i] = 0
 | ||
| 		}
 | ||
| 
 | ||
| 		if i < n-1 {
 | ||
| 			// Apply H_i^T to A[offset+i:m, i:n] from the left.
 | ||
| 			aii := a[offpi*lda+i]
 | ||
| 			a[offpi*lda+i] = 1
 | ||
| 			impl.Dlarf(blas.Left, m-offpi, n-i-1, a[offpi*lda+i:], lda, tau[i], a[offpi*lda+i+1:], lda, work)
 | ||
| 			a[offpi*lda+i] = aii
 | ||
| 		}
 | ||
| 
 | ||
| 		// Update partial column norms.
 | ||
| 		for j := i + 1; j < n; j++ {
 | ||
| 			if vn1[j] == 0 {
 | ||
| 				continue
 | ||
| 			}
 | ||
| 
 | ||
| 			// The following marked lines follow from the
 | ||
| 			// analysis in Lapack Working Note 176.
 | ||
| 			r := math.Abs(a[offpi*lda+j]) / vn1[j] // *
 | ||
| 			temp := math.Max(0, 1-r*r)             // *
 | ||
| 			r = vn1[j] / vn2[j]                    // *
 | ||
| 			temp2 := temp * r * r                  // *
 | ||
| 			if temp2 < tol3z {
 | ||
| 				var v float64
 | ||
| 				if offpi < m-1 {
 | ||
| 					v = bi.Dnrm2(m-offpi-1, a[(offpi+1)*lda+j:], lda)
 | ||
| 				}
 | ||
| 				vn1[j] = v
 | ||
| 				vn2[j] = v
 | ||
| 			} else {
 | ||
| 				vn1[j] *= math.Sqrt(temp) // *
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | 
