mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			83 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			83 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import "math"
 | ||
| 
 | ||
| // Dlaev2 computes the Eigen decomposition of a symmetric 2×2 matrix.
 | ||
| // The matrix is given by
 | ||
| //  [a b]
 | ||
| //  [b c]
 | ||
| // Dlaev2 returns rt1 and rt2, the eigenvalues of the matrix where |RT1| > |RT2|,
 | ||
| // and [cs1, sn1] which is the unit right eigenvalue for RT1.
 | ||
| //  [ cs1 sn1] [a b] [cs1 -sn1] = [rt1   0]
 | ||
| //  [-sn1 cs1] [b c] [sn1  cs1]   [  0 rt2]
 | ||
| //
 | ||
| // Dlaev2 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dlaev2(a, b, c float64) (rt1, rt2, cs1, sn1 float64) {
 | ||
| 	sm := a + c
 | ||
| 	df := a - c
 | ||
| 	adf := math.Abs(df)
 | ||
| 	tb := b + b
 | ||
| 	ab := math.Abs(tb)
 | ||
| 	acmx := c
 | ||
| 	acmn := a
 | ||
| 	if math.Abs(a) > math.Abs(c) {
 | ||
| 		acmx = a
 | ||
| 		acmn = c
 | ||
| 	}
 | ||
| 	var rt float64
 | ||
| 	if adf > ab {
 | ||
| 		rt = adf * math.Sqrt(1+(ab/adf)*(ab/adf))
 | ||
| 	} else if adf < ab {
 | ||
| 		rt = ab * math.Sqrt(1+(adf/ab)*(adf/ab))
 | ||
| 	} else {
 | ||
| 		rt = ab * math.Sqrt(2)
 | ||
| 	}
 | ||
| 	var sgn1 float64
 | ||
| 	if sm < 0 {
 | ||
| 		rt1 = 0.5 * (sm - rt)
 | ||
| 		sgn1 = -1
 | ||
| 		rt2 = (acmx/rt1)*acmn - (b/rt1)*b
 | ||
| 	} else if sm > 0 {
 | ||
| 		rt1 = 0.5 * (sm + rt)
 | ||
| 		sgn1 = 1
 | ||
| 		rt2 = (acmx/rt1)*acmn - (b/rt1)*b
 | ||
| 	} else {
 | ||
| 		rt1 = 0.5 * rt
 | ||
| 		rt2 = -0.5 * rt
 | ||
| 		sgn1 = 1
 | ||
| 	}
 | ||
| 	var cs, sgn2 float64
 | ||
| 	if df >= 0 {
 | ||
| 		cs = df + rt
 | ||
| 		sgn2 = 1
 | ||
| 	} else {
 | ||
| 		cs = df - rt
 | ||
| 		sgn2 = -1
 | ||
| 	}
 | ||
| 	acs := math.Abs(cs)
 | ||
| 	if acs > ab {
 | ||
| 		ct := -tb / cs
 | ||
| 		sn1 = 1 / math.Sqrt(1+ct*ct)
 | ||
| 		cs1 = ct * sn1
 | ||
| 	} else {
 | ||
| 		if ab == 0 {
 | ||
| 			cs1 = 1
 | ||
| 			sn1 = 0
 | ||
| 		} else {
 | ||
| 			tn := -cs / tb
 | ||
| 			cs1 = 1 / math.Sqrt(1+tn*tn)
 | ||
| 			sn1 = tn * cs1
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if sgn1 == sgn2 {
 | ||
| 		tn := cs1
 | ||
| 		cs1 = -sn1
 | ||
| 		sn1 = tn
 | ||
| 	}
 | ||
| 	return rt1, rt2, cs1, sn1
 | ||
| }
 | 
