mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			54 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			54 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import "gonum.org/v1/gonum/blas"
 | ||
| 
 | ||
| // Dgerq2 computes an RQ factorization of the m×n matrix A,
 | ||
| //  A = R * Q.
 | ||
| // On exit, if m <= n, the upper triangle of the subarray
 | ||
| // A[0:m, n-m:n] contains the m×m upper triangular matrix R.
 | ||
| // If m >= n, the elements on and above the (m-n)-th subdiagonal
 | ||
| // contain the m×n upper trapezoidal matrix R.
 | ||
| // The remaining elements, with tau, represent the
 | ||
| // orthogonal matrix Q as a product of min(m,n) elementary
 | ||
| // reflectors.
 | ||
| //
 | ||
| // The matrix Q is represented as a product of elementary reflectors
 | ||
| //  Q = H_0 H_1 . . . H_{min(m,n)-1}.
 | ||
| // Each H(i) has the form
 | ||
| //  H_i = I - tau_i * v * v^T
 | ||
| // where v is a vector with v[0:n-k+i-1] stored in A[m-k+i, 0:n-k+i-1],
 | ||
| // v[n-k+i:n] = 0 and v[n-k+i] = 1.
 | ||
| //
 | ||
| // tau must have length min(m,n) and work must have length m, otherwise
 | ||
| // Dgerq2 will panic.
 | ||
| //
 | ||
| // Dgerq2 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dgerq2(m, n int, a []float64, lda int, tau, work []float64) {
 | ||
| 	checkMatrix(m, n, a, lda)
 | ||
| 	k := min(m, n)
 | ||
| 	if len(tau) < k {
 | ||
| 		panic(badTau)
 | ||
| 	}
 | ||
| 	if len(work) < m {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 
 | ||
| 	for i := k - 1; i >= 0; i-- {
 | ||
| 		// Generate elementary reflector H[i] to annihilate
 | ||
| 		// A[m-k+i, 0:n-k+i-1].
 | ||
| 		mki := m - k + i
 | ||
| 		nki := n - k + i
 | ||
| 		var aii float64
 | ||
| 		aii, tau[i] = impl.Dlarfg(nki+1, a[mki*lda+nki], a[mki*lda:], 1)
 | ||
| 
 | ||
| 		// Apply H[i] to A[0:m-k+i-1, 0:n-k+i] from the right.
 | ||
| 		a[mki*lda+nki] = 1
 | ||
| 		impl.Dlarf(blas.Right, mki, nki+1, a[mki*lda:], 1, tau[i], a, lda, work)
 | ||
| 		a[mki*lda+nki] = aii
 | ||
| 	}
 | ||
| }
 | 
