mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			50 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			50 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import "gonum.org/v1/gonum/blas"
 | ||
| 
 | ||
| // Dgelq2 computes the LQ factorization of the m×n matrix A.
 | ||
| //
 | ||
| // In an LQ factorization, L is a lower triangular m×n matrix, and Q is an n×n
 | ||
| // orthonormal matrix.
 | ||
| //
 | ||
| // a is modified to contain the information to construct L and Q.
 | ||
| // The lower triangle of a contains the matrix L. The upper triangular elements
 | ||
| // (not including the diagonal) contain the elementary reflectors. tau is modified
 | ||
| // to contain the reflector scales. tau must have length of at least k = min(m,n)
 | ||
| // and this function will panic otherwise.
 | ||
| //
 | ||
| // See Dgeqr2 for a description of the elementary reflectors and orthonormal
 | ||
| // matrix Q. Q is constructed as a product of these elementary reflectors,
 | ||
| // Q = H_{k-1} * ... * H_1 * H_0.
 | ||
| //
 | ||
| // work is temporary storage of length at least m and this function will panic otherwise.
 | ||
| //
 | ||
| // Dgelq2 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dgelq2(m, n int, a []float64, lda int, tau, work []float64) {
 | ||
| 	checkMatrix(m, n, a, lda)
 | ||
| 	k := min(m, n)
 | ||
| 	if len(tau) < k {
 | ||
| 		panic(badTau)
 | ||
| 	}
 | ||
| 	if len(work) < m {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 	for i := 0; i < k; i++ {
 | ||
| 		a[i*lda+i], tau[i] = impl.Dlarfg(n-i, a[i*lda+i], a[i*lda+min(i+1, n-1):], 1)
 | ||
| 		if i < m-1 {
 | ||
| 			aii := a[i*lda+i]
 | ||
| 			a[i*lda+i] = 1
 | ||
| 			impl.Dlarf(blas.Right, m-i-1, n-i,
 | ||
| 				a[i*lda+i:], 1,
 | ||
| 				tau[i],
 | ||
| 				a[(i+1)*lda+i:], lda,
 | ||
| 				work)
 | ||
| 			a[i*lda+i] = aii
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | 
