mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			85 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2016 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import "gonum.org/v1/gonum/blas"
 | ||
| 
 | ||
| // Dgehd2 reduces a block of a general n×n matrix A to upper Hessenberg form H
 | ||
| // by an orthogonal similarity transformation Q^T * A * Q = H.
 | ||
| //
 | ||
| // The matrix Q is represented as a product of (ihi-ilo) elementary
 | ||
| // reflectors
 | ||
| //  Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
 | ||
| // Each H_i has the form
 | ||
| //  H_i = I - tau[i] * v * v^T
 | ||
| // where v is a real vector with v[0:i+1] = 0, v[i+1] = 1 and v[ihi+1:n] = 0.
 | ||
| // v[i+2:ihi+1] is stored on exit in A[i+2:ihi+1,i].
 | ||
| //
 | ||
| // On entry, a contains the n×n general matrix to be reduced. On return, the
 | ||
| // upper triangle and the first subdiagonal of A are overwritten with the upper
 | ||
| // Hessenberg matrix H, and the elements below the first subdiagonal, with the
 | ||
| // slice tau, represent the orthogonal matrix Q as a product of elementary
 | ||
| // reflectors.
 | ||
| //
 | ||
| // The contents of A are illustrated by the following example, with n = 7, ilo =
 | ||
| // 1 and ihi = 5.
 | ||
| // On entry,
 | ||
| //  [ a   a   a   a   a   a   a ]
 | ||
| //  [     a   a   a   a   a   a ]
 | ||
| //  [     a   a   a   a   a   a ]
 | ||
| //  [     a   a   a   a   a   a ]
 | ||
| //  [     a   a   a   a   a   a ]
 | ||
| //  [     a   a   a   a   a   a ]
 | ||
| //  [                         a ]
 | ||
| // on return,
 | ||
| //  [ a   a   h   h   h   h   a ]
 | ||
| //  [     a   h   h   h   h   a ]
 | ||
| //  [     h   h   h   h   h   h ]
 | ||
| //  [     v1  h   h   h   h   h ]
 | ||
| //  [     v1  v2  h   h   h   h ]
 | ||
| //  [     v1  v2  v3  h   h   h ]
 | ||
| //  [                         a ]
 | ||
| // where a denotes an element of the original matrix A, h denotes a
 | ||
| // modified element of the upper Hessenberg matrix H, and vi denotes an
 | ||
| // element of the vector defining H_i.
 | ||
| //
 | ||
| // ilo and ihi determine the block of A that will be reduced to upper Hessenberg
 | ||
| // form. It must hold that 0 <= ilo <= ihi <= max(0, n-1), otherwise Dgehd2 will
 | ||
| // panic.
 | ||
| //
 | ||
| // On return, tau will contain the scalar factors of the elementary reflectors.
 | ||
| // It must have length equal to n-1, otherwise Dgehd2 will panic.
 | ||
| //
 | ||
| // work must have length at least n, otherwise Dgehd2 will panic.
 | ||
| //
 | ||
| // Dgehd2 is an internal routine. It is exported for testing purposes.
 | ||
| func (impl Implementation) Dgehd2(n, ilo, ihi int, a []float64, lda int, tau, work []float64) {
 | ||
| 	checkMatrix(n, n, a, lda)
 | ||
| 	switch {
 | ||
| 	case ilo < 0 || ilo > max(0, n-1):
 | ||
| 		panic(badIlo)
 | ||
| 	case ihi < min(ilo, n-1) || ihi >= n:
 | ||
| 		panic(badIhi)
 | ||
| 	case len(tau) != n-1:
 | ||
| 		panic(badTau)
 | ||
| 	case len(work) < n:
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 
 | ||
| 	for i := ilo; i < ihi; i++ {
 | ||
| 		// Compute elementary reflector H_i to annihilate A[i+2:ihi+1,i].
 | ||
| 		var aii float64
 | ||
| 		aii, tau[i] = impl.Dlarfg(ihi-i, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda)
 | ||
| 		a[(i+1)*lda+i] = 1
 | ||
| 
 | ||
| 		// Apply H_i to A[0:ihi+1,i+1:ihi+1] from the right.
 | ||
| 		impl.Dlarf(blas.Right, ihi+1, ihi-i, a[(i+1)*lda+i:], lda, tau[i], a[i+1:], lda, work)
 | ||
| 
 | ||
| 		// Apply H_i to A[i+1:ihi+1,i+1:n] from the left.
 | ||
| 		impl.Dlarf(blas.Left, ihi-i, n-i-1, a[(i+1)*lda+i:], lda, tau[i], a[(i+1)*lda+i+1:], lda, work)
 | ||
| 		a[(i+1)*lda+i] = aii
 | ||
| 	}
 | ||
| }
 | 
