mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			82 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| // Dgecon estimates the reciprocal of the condition number of the n×n matrix A
 | ||
| // given the LU decomposition of the matrix. The condition number computed may
 | ||
| // be based on the 1-norm or the ∞-norm.
 | ||
| //
 | ||
| // The slice a contains the result of the LU decomposition of A as computed by Dgetrf.
 | ||
| //
 | ||
| // anorm is the corresponding 1-norm or ∞-norm of the original matrix A.
 | ||
| //
 | ||
| // work is a temporary data slice of length at least 4*n and Dgecon will panic otherwise.
 | ||
| //
 | ||
| // iwork is a temporary data slice of length at least n and Dgecon will panic otherwise.
 | ||
| func (impl Implementation) Dgecon(norm lapack.MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
 | ||
| 	checkMatrix(n, n, a, lda)
 | ||
| 	if norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum {
 | ||
| 		panic(badNorm)
 | ||
| 	}
 | ||
| 	if len(work) < 4*n {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 	if len(iwork) < n {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 
 | ||
| 	if n == 0 {
 | ||
| 		return 1
 | ||
| 	} else if anorm == 0 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 
 | ||
| 	bi := blas64.Implementation()
 | ||
| 	var rcond, ainvnm float64
 | ||
| 	var kase int
 | ||
| 	var normin bool
 | ||
| 	isave := new([3]int)
 | ||
| 	onenrm := norm == lapack.MaxColumnSum
 | ||
| 	smlnum := dlamchS
 | ||
| 	kase1 := 2
 | ||
| 	if onenrm {
 | ||
| 		kase1 = 1
 | ||
| 	}
 | ||
| 	for {
 | ||
| 		ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave)
 | ||
| 		if kase == 0 {
 | ||
| 			if ainvnm != 0 {
 | ||
| 				rcond = (1 / ainvnm) / anorm
 | ||
| 			}
 | ||
| 			return rcond
 | ||
| 		}
 | ||
| 		var sl, su float64
 | ||
| 		if kase == kase1 {
 | ||
| 			sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.Unit, normin, n, a, lda, work, work[2*n:])
 | ||
| 			su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[3*n:])
 | ||
| 		} else {
 | ||
| 			su = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[3*n:])
 | ||
| 			sl = impl.Dlatrs(blas.Lower, blas.Trans, blas.Unit, normin, n, a, lda, work, work[2*n:])
 | ||
| 		}
 | ||
| 		scale := sl * su
 | ||
| 		normin = true
 | ||
| 		if scale != 1 {
 | ||
| 			ix := bi.Idamax(n, work, 1)
 | ||
| 			if scale == 0 || scale < math.Abs(work[ix])*smlnum {
 | ||
| 				return rcond
 | ||
| 			}
 | ||
| 			impl.Drscl(n, scale, work, 1)
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | 
